84 resultados para Protein aggregation

em Scielo Sa


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Methylglyoxal is a very reactive α-oxoaldehyde putatively produced by glycolysis, cytochrome P450-catalyzed acetone oxidation and aminoacetone oxidation. Methylglyoxal has been pointed as a substrate for the glyoxalase system ultimately energy-yielding pyruvate, but methylglyoxal is also a toxicant involved in protein aggregation and DNA modification. Controversial hypothesis on methylglyoxal as an anticancer agent, an energy-yielding glycolysis intermediates, and as a regulator of cell division have also been proposed. Methylglyoxal research focuses now on unveiling its biological properties and on the discovery of drugs capable to inhibit its toxic effects, principally in diabetes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Trypsin is a serino-protease with a polypeptide chain of 223 amino acid residues and contains six disulfide bridges. It is a globular protein with a predominance of antiparallel ß-sheet and helix in its secondary structure and has two domains with similar structures. We assessed the stability of ß-trypsin in the acid pH range using microcalorimetric (differential scanning calorimetry) techniques. Protein concentrations varied in the range of 0.05 to 2.30 mg/ml. Buffer solutions of 50.0 mM ß-alanine and 20.0 mM CaCl2 at different pH values (from 2.0 to 4.2) and concentrations of sorbitol (1.0 and 2.0 M), urea (0.5 M) or guanidinium hydrochloride (0.5 and 1.0 M) were used. The data suggest that we are studying the same conformational transition of the protein in all experimental situations using pH, sorbitol, urea and guanidinium hydrochloride as perturbing agents. The observed van't Hoff ratios (deltaHcal/deltaHvH) of 1.0 to 0.5 in the pH range of 3.2 to 4.2 suggest protein aggregation. In contrast, deltaHcal/deltaHvH ratios equal to one in the pH range of 2.0 to 3.2 suggest that the protein unfolds as a monomer. At pH 3.00, ß-trypsin unfolded with Tm = 54ºC and deltaH = 101.8 kcal/mol, and the change in heat capacity between the native and unfolded forms of the protein (deltaCp) was estimated to be 2.50 ± 0.07 kcal mol-1 K-1. The stability of ß-trypsin calculated at 298 K was deltaG D = 5.7 kcal/mol at pH 3.00 and deltaG D = 15.2 kcal/mol at pH 7.00, values in the range expected for a small globular protein.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Scrapie is a transmissible spongiform encephalopathy of sheeps and goats, associated with the deposition of a isoform of the prion protein (PrPsc). This isoform presents an altered conformation that leads to aggregation in the host's central nervous and lymphoreticular systems. Predisposition to the prion agent infection can be influenced by specific genotypes related to mutations in amino acids of the PrPsc gene. The most characterized mutations occur at codons 136, 154 and 171, with genotypes VRQ being the most susceptible and ARR the most resistant. In this study we have analyzed polymorphisms in 15 different codons of the PrPsc gene in sheeps from a Suffolk herd from Brazil affected by an outbreak of classical scrapie. Amplicons from the PrPsc gene, encompassing the most relevant altered codons in the protein, were sequenced in order to determine each animal's genotype. We have found polymorphisms at 3 of the 15 analyzed codons (136, 143 and 171). The most variable codon was 171, where all described alleles were identified. A rare polymorphism was found at the 143 codon in 4% of the samples analyzed, which has been described as increasing scrapie resistance in otherwise susceptible animals. No other polymorphisms were detected in the remaining 12 analyzed codons, all of them corresponding to the wild-type prion protein. Regarding the risk degree of developing scrapie, most of the animals (96%) had genotypes corresponding to risk groups 1 to 3 (very low to moderate), with only 4% in the higher risks group. Our data is discussed in relation to preventive measures involving genotyping and positive selection to control the disease.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aluminum (Al3+) intoxication is thought to play a major role in the development of Alzheimer's disease and in certain pathologic manifestations arising from long-term hemodialysis. Although the metal does not present redox capacity, it can stimulate tissue lipid peroxidation in animal models. Furthermore, in vitro studies have revealed that the fluoroaluminate complex induces diacylglycerol formation, 43-kDa protein phosphorylation and aggregation. Based on these observations, we postulated that Al3+-induced blood platelet aggregation was mediated by lipid peroxidation. Using chemiluminescence (CL) of luminol as an index of total lipid peroxidation capacity, we established a correlation between lipid peroxidation capacity and platelet aggregation. Al3+ (20-100 µM) stimulated CL production by human blood platelets as well as their aggregation. Incubation of the platelets with the antioxidants nor-dihydroguaiaretic acid (NDGA) (100 µM) and n-propyl gallate (NPG) (100 µM), inhibitors of the lipoxygenase pathway, completely prevented CL and platelet aggregation. Acetyl salicylic acid (ASA) (100 µM), an inhibitor of the cyclooxygenase pathway, was a weaker inhibitor of both events. These findings suggest that Al3+ stimulates lipid peroxidation and the lipoxygenase pathway in human blood platelets thereby causing their aggregation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Alpha-Hemolysin is synthesized as a 1024-amino acid polypeptide, then intracellularly activated by specific fatty acylation. A second activation step takes place in the extracellular medium through binding of Ca2+ ions. Even in the absence of fatty acids and Ca2+ HlyA is an amphipathic protein, with a tendency to self-aggregation. However, Ca2+-binding appears to expose hydrophobic patches on the protein surface, facilitating both self-aggregation and irreversible insertion into membranes. The protein may somehow bind membranes in the absence of divalent cations, but only when Ca2+ (or Sr2+, or Ba2+) is bound to the toxin in aqueous suspensions, i.e., prior to its interaction with bilayers, can a-hemolysin bind irreversibly model or cell membranes in such a way that the integrity of the membrane barrier is lost, and cell or vesicle leakage ensues. Leakage is not due to the formation of proteinaceous pores, but rather to the transient disruption of the bilayer, due to the protein insertion into the outer membrane monolayer, and subsequent perturbations in the bilayer lateral tension. Protein or glycoprotein receptors for a-hemolysin may exist on the cell surface, but the toxin is also active on pure lipid bilayers.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the present time, protein folding is an extremely active field of research including aspects of biology, chemistry, biochemistry, computer science and physics. The fundamental principles have practical applications in the exploitation of the advances in genome research, in the understanding of different pathologies and in the design of novel proteins with special functions. Although the detailed mechanisms of folding are not completely known, significant advances have been made in the understanding of this complex process through both experimental and theoretical approaches. In this review, the evolution of concepts from Anfinsen's postulate to the "new view" emphasizing the concept of the energy landscape of folding is presented. The main rules of protein folding have been established from in vitro experiments. It has been long accepted that the in vitro refolding process is a good model for understanding the mechanisms by which a nascent polypeptide chain reaches its native conformation in the cellular environment. Indeed, many denatured proteins, even those whose disulfide bridges have been disrupted, are able to refold spontaneously. Although this assumption was challenged by the discovery of molecular chaperones, from the amount of both structural and functional information now available, it has been clearly established that the main rules of protein folding deduced from in vitro experiments are also valid in the cellular environment. This modern view of protein folding permits a better understanding of the aggregation processes that play a role in several pathologies, including those induced by prions and Alzheimer's disease. Drug design and de novo protein design with the aim of creating proteins with novel functions by application of protein folding rules are making significant progress and offer perspectives for practical applications in the development of pharmaceuticals and medical diagnostics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the defenses against nephrolithiasis is provided by macromolecules that modulate the nucleation, growth, aggregation and retention of crystals in the kidneys. The aim of the present study was to determine the behavior of two of these proteins, Tamm-Horsfall and uromodulin, in calcium oxalate crystallization in vitro. We studied a group of 10 male stone formers who had formed at least one kidney stone composed of calcium oxalate. They were classified as having idiopathic nephrolithiasis and had no well-known metabolic risk factors involved in kidney stone pathogenesis. Ten normal men were used as controls, as was a group consisting of five normal women and another consisting of five pregnant women. Crystallization was induced by a fixed supersaturation of calcium oxalate and measured with a Coulter Counter. All findings were confirmed by light and scanning electron microscopy. The number of particulate material deposited from patients with Tamm-Horsfall protein was higher than that of the controls (P<0.001). However, Tamm-Horsfall protein decreased the particle diameter of the stone formers when analyzed by the mode of the volume distribution curve (P<0.002) (5.64 ± 0.55 µm compared to 11.41 ± 0.48 µm of uromodulin; 15.94 ± 3.93 µm and 12.45 ± 0.97 µm of normal men Tamm-Horsfall protein and uromodulin, respectively; 8.17 ± 1.57 µm and 9.82 ± 0.95 µm of normal women Tamm-Horsfall protein and uromodulin, respectively; 12.17 ± 1.41 µm and 12.99 ± 0.51 µm of pregnant Tamm-Horsfall protein and uromodulin, respectively). Uromodulin produced fewer particles than Tamm-Horsfall protein in all groups. Nonetheless, the total volume of the crystals produced by uromodulin was higher than that produced by Tamm-Horsfall protein. Our results indicate a different effect of Tamm-Horsfall protein and uromodulin. This dual behavior suggests different functions. Tamm-Horsfall protein may act on nucleation and inhibit crystal aggregation, while uromodulin may promote aggregation of calcium oxalate crystals.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main hypothesis for prion diseases proposes that the cellular protein (PrP C) can be altered into a misfolded, ß-sheet-rich isoform, the PrP Sc (from scrapie). The formation of this abnormal isoform then triggers the transmissible spongiform encephalopathies. Here, we discuss the use of high pressure as a tool to investigate this structural transition and to populate possible intermediates in the folding/unfolding pathway of the prion protein. The latest findings on the application of high pressure to the cellular prion protein and to the scrapie PrP forms will be summarized in this review, which focuses on the energetic and volumetric properties of prion folding and conversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the last few years, hydrostatic pressure has been extensively used in the study of both protein folding and misfolding/aggregation. Compared to other chemical or physical denaturing agents, a unique feature of pressure is its ability to induce subtle changes in protein conformation, which allow the stabilization of partially folded intermediate states that are usually not significantly populated under more drastic conditions (e.g., in the presence of chemical denaturants or at high temperatures). Much of the recent research in the field of protein folding has focused on the characterization of folding intermediates since these species appear to be involved in a variety of disease-causing protein misfolding and aggregation events. The exact mechanisms of these biologicalphenomena, however, are still poorly understood. Here, we review recent examples of the use of hydrostatic pressure as a tool to obtain insight into the forces and energetics governing the productive folding or the misfolding and aggregation of proteins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Connective tissue growth factor (CCN2/CTGF) is a matricellular-secreted protein involved in extracellular matrix remodeling. The P19 cell line is an embryonic carcinoma line widely used as a cellular model for differentiation and migration studies. In the present study, we employed an exogenous source of CCN2 and small interference RNA to address the role of CCN2 in the P19 cell aggregation phenomenon. Our data showed that increasing CCN2 protein concentrations from 0.1 to 20 nM decreased the number of cell clusters and dramatically increased cluster size without changing proliferation or cell survival, suggesting that CCN2 induced aggregation. In addition, CCN2 specific silencing inhibited typical P19 cell aggregation, which could be partially rescued by 20 nM CCN2. The present study demonstrates that CCN2 is a key molecule for cell aggregation of embryonic P19 cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two sheep antisera, one of which raised against polysaccharide (Po) and other against protein (Pt) components of Schistosoma mansoni adult worms, were assessed by ELISA for their ability to detect circulating parasite antigens in patients with different clinical forms of chronic schistosomiasis mansoni. The former antiserum detected parasite antigens in liver granulomata and the latter in renal glomeruli from schistosomiasis patients and mice experimentally infected with S. mansoni. In general, the levels and/or positivity rate of circulating antigens and specific IgG antibodies were significantly higher in patients with hepatointestinal (HI) and hepatosplenic (HS) forms than in mild intestinal (I) forms. An association between Po antigens and clinical features of the disease was observed, as the level of these antigens was low (137 ng/ml) as well as the positivity rate (7.9%) in patients with I forms; values that were intermediate (593 ng/ml and 33.3%) in those with HI forms, and high (1.563 ng/ml and 50.0%) in more severe HS forms. The Pt antigens were detected in the studied clinical forms not differing statistically but, the positivity rate was significantly higher in HS forms comparatively to I forms. The antisera studied revealed distinct circulating antigen profiles, and the prognostic value of Po and Pt antigens was suggested.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this study was to assess vitamin A status and association between acute diarrhoea and plasma levels of vitamin A through cross-sectional comparison in children. Plasma vitamin A was measured by colorimetric method of Neeld & Pearson and RBP by radial immunodiffusion technique. Seventy eight children (aged 18-119 months), 26 with current history of diarrhoea and 52 children as controls (outpatient from the Santa Casa de Misericórdia Hospital in metropolitan area of São Paulo City, Brazil) were studied. Children with history of diarrhoea showed significant low levels (mean ± s.e.) as compared to controls, vitamin A (15.87 ± 1.4 µg/dl vs. 21.14 ± 1.15 µg/dl, p < 0.007) and RBP (1.70 ± 0.2 mg/dl vs. 2.52 ±0.11 mg/dl). Multivariate logistic regression adjusted by sex, age, nutritional status and mother education revealed association between diarrhoea and inadequate levels of vitamin A and RBP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper deals with the analysis of 10 batches of L.major-like and L.(V.) braziliensis antigens added or not of a proteases inhibitor evaluated by means of an IgG-ELISA on three consecutive days using positive standard sera from patients with diagnosis of American Leishmaniasis previously tested for the presence of IgG antibodies by means of ELISA. The statistical analysis showed that for L. (V.) braziliensis the PMSF-containing antigen did not show any difference among batches or days of testing; the L.(V.) braziliensis antigen without PMSF showed statistical significance for differences among batches and a two-way ANOVA showed significant differences between antigens. L.major-like antigen prepared with or without PMSF showed differences among batches; all 3 days of testing displayed differences for the PMSF antigen but only for days 1 and 2 for the antigen without inhibitor. A two-way ANOVA showed differences among batches of the antigens but not for antigens with and without the protein inhibitor. According to the statistical analysis the L.major-like antigen added or not of PMSF has shown that it is the choice antigen for mucocutaneous leishmaniasis serology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Germfree (GF) and conventional (CV) mice were fed on diets containing 4.4, 13.2 or 26.4% of protein (weight/weight). CV mice fed on low protein diet did not gain weight during four weeks, whereas the protein deficient diet did not affect the growth of GF mice. After four weeks on these diets, the mice were inoculated with 5x103 trypomastigotes of Trypanosoma cruzi. The protein deficiency affected less the GF than the CV mice, according to the following parameters: weight gain, hemoglobin, plasma protein and albumin levels and water and protein contents of the carcass. Infection with T. cruzi produced a significant decrease in hemoglobin levels, red blood cell count, and water and protein contents in the carcass. This decrease was more pronounced in the GF mice. Histopathologically, there was no difference between the treatments in animals with the same microbiological status (GF or CV). However, the disease was more severe in the GF than in the CV mice.