35 resultados para Ionic liquid, Lignocellulosics, Sugarcane bagasse, Pretreatment
em Scielo Sa
Resumo:
The present paper focuses on improving chromium (III) uptake capacity of sugarcane bagasse through its chemical modification with citric acid and/or sodium hydroxide. The chemical modifications were confirmed by infrared spectroscopy, with an evident peak observed at 1730 cm-1, attributed to carbonyl groups. Equilibrium was reached after 24 h, and the kinetics followed the pseudo-second-order model. The highest chromium (III) maximum adsorption capacity (MAC) value was found when using sugarcane bagasse modified with sodium hydroxide and citric acid (58.00 mg g-1) giving a MAC value about three times greater (20.34 mg g-1) than for raw sugarcane bagasse.
Resumo:
The enzymatic hydrolysis of steam-pretreated sugarcane bagasse, either delignified or non-delignified, was studied as a function of enzyme loading. Hydrolysis experiments were carried out using five enzyme loadings (2.5 to 20 FPU/g cellulose) and the concentration of solids was 2% for both materials. Alkaline delignification improved cellulose hydrolysis by increasing surface area. For both materials, glucose concentrations increased with enzyme loading. On the other hand, enzyme loadings higher than 15 FPU/g did not result in any increase in the initial rate, since the excess of enzyme adsorbed onto the substrate restricted the diffusion process through the structure.
Resumo:
Blends of fiber from sugar cane bagasse, corn starch, and whey protein concentrate were extruded. A single screw extruder, equipped with a screw at a constant compression ratio of 1:1 and a die diameter of 3 mm, was used. The best processing conditions were determined according to a central composite rotatable design (α = 1.41) with 5 central points, which gives a total of 13 tests. During the extrusion process the content of insoluble fiber decreased and that of soluble fiber increased. An increase in the contents of fiber and in the barrel temperature resulted in a decrease in the expansion index values and an increase in the water absorption index values; whereas in blends with intermediate fiber contents the effects in these parameters were found to be the opposite. High fiber contents increased penetration force but decreased luminosity, water solubility index values and the adhesive force in gels. The extrusion process improved the functional properties of sugarcane fiber bagasse enabling its addition to diverse alimentary systems.
Resumo:
The effect of moisture content in the steam treatment and enzymatic hydrolysis of sugarcane bagasse was evaluated. Steam treatment was perfomed at 195-210 ºC for 4-8 min using cane bagasse with moisture contents in the range 16-100 wt% (dry basis). Increased moisture contents not only had a positive influence in recovery of main cane biomass components but also resulted in better substrates for enzymatic hydrolysis. As a result, drying is not required for optimal pretreatment and enzymatic hydrolysis of sugarcane bagasse, which can be processed into second generation ethanol immediately after crushing and hot water washing.
Resumo:
This study aimed to evaluate the effect of substrate on growth, emergence, nutrition, and quality of Anacardium othonianum Rizz. (cerrado cashew tree) seedlings. The experiment was conducted in a greenhouse at the Plant Tissue Culture Laboratory on the Rio Verde campus. The following substrates were used: 1) Bioplant®, 2) Mecplant® (MP) + carbonized rice husk (CRH) (7:3), 3) fine-grained vermiculite (FGV), 4) FGV+CRH (3:1), 5) FGV+CRH (1:1), 6) FGV+CRH (1:3), and 7) sugarcane bagasse (SB) + sugarcane mill filter cake (FC) (3:2). Emerged seedlings were counted at 2-day intervals for 38 days following emergence of the first seedling. At 39, 64, and 89 days after seeding (DAS), the following variables were measured: stem length (SL), stem diameter (SD), and number of leaves (NL). Accumulated dry weight, quality indices, and leaf macro- and micronutrient levels were determined at 89 DAS. Plants grown in the FGV and FGV+CFH (1:3) substrates had shorter stem lengths than the plants grown in other substrates. Increases in seedling growth were smaller between 64 and 89 DAS compared to the initial period of the experiment. The highest leaf N concentrations were found in the SB+FC substrate treatment group; P and K concentrations were higher for the MP+CRH (7:3), SB+FC, and Bioplant® treatments; and Ca levels were higher for the SB+FC and MP+CRH (7:3) substrate treatments. The MP+CRH (7:3) substrate treatment group had the highest leaf B and Mn micronutrient concentrations, and plants from the Bioplant® substrate group had the highest leaf B micronutrient content. Mg, S, Cu, Zn, and Fe concentrations did not differ among the different substrates. The plant traits that differed most among the treatments included stem length for the FGV and FGV+CRH (1:3) substrate groups and leaf nutrient concentrations, which were higher for the SB+FC group followed by the MP+CRH and Bioplant® treatments.
Resumo:
Effluents generated by the textile industry are of environmental concern because of the presence of dyes with complex molecular structure, which confer them recalcitrant characteristics. Indigo is one of the most widely used dyes within the textile sector and studies have suggested that edible fungi may be capable of its biodegradation. A textile effluent was mixed with sugarcane bagasse and inoculated with Pleurotus sajor-caju, the decolorization being evaluated after 14 days, when the process was observed. Enzymatic activities of laccase, peroxidase and manganese peroxidase were determined, the production of these ligninolytic enzymes being evident and a synergism among them being likely in the decolorizing process.
Resumo:
The spectroscopic behavior of thioxanthone and benzil (diphenylethanedione or dibenzoyl) in the ionic liquid [bmim.PF6] has been investigated employing the laser flash photolysis technique. Triplet-triplet absorption spectra for these carbonyl compounds in [bmim.PF6] are similar to those observed in organic solvents. The triplet lifetime for thioxanthone in desogygenated samples is very long (71 μs), whereas in oxygen-saturated solution is 500 ns, which indicates the low oxygen solubility in this solvent. For benzil, lifetimes of 10 μs in [bmim.PF6] and 3.8 μs in acetonitrile were obtained. The decay for triplet thioxanthone and benzil follows a clear first order kinetics in [bmim.PF6], from which one can conclude that triplet-triplet annihilation is not an important decay process in this solvent.
Resumo:
An evaluation was made of the properties of sugarcane bagasse during the storage process for subsequent burning in a boiler. Samples of bagasse were collected over a period of 150 days from the Caeté sugar mill (MG) at various points of the stockpile soon after the sugarcane was pressed to extract its juice, as well as from natural bagasse, dry and damp. Thermal analyses of the samples were carried out and the results indicated that, during the storage of bagasse, dry or damp, the biomass loses up to 32% of its calorific power, due to decomposition of the hemicellulose.
Incorporação de líquidos iônicos e nanopartículas metálicas na construção de sensores eletroquímicos
Resumo:
The most relevant advances on analytical applications of ionic liquids (IL) as binder in the construction of electrochemical sensors and biosensors based on carbon paste are presented. This new class of solvents - the IL - has received great attention in electroanalytical researches due to the excellent physical and chemical properties of these materials, such as high conductivity, low toxicity, good stability, large electrochemical window and catalytic ability. Recently, the interest in electrodes modified with IL, especially when combined with metallic nanoparticles, has increased expressively due to improve the sensitivity and others advantages discussed in this review.
Resumo:
Epoxidation of soybean oil was investigated using 1-n-butyl-3-methylimidazolium hexafluorophosphate [bmim][PF6] ionic liquid as biphasic medium with molybdenum(VI) acetylacetonate complex and tert-butyl hydroperoxide TBHP as oxidizing agent. Reaction conditions were molar ratio TBHP:number of double bonds of oil:catalyst of 100:100:1, reaction temperature of 60 ºC and reaction time between 2 and 24 h. The proposed system showed catalytic activity for epoxidation reactions under tested conditions. Reuse of ionic liquid/catalyst system for epoxidation reactions was also investigated. Evaluation of epoxidation observed in this catalytic system was done by quantitative ¹H NMR data.
Resumo:
Lipase from Thermomyces lanuginosus was covalently immobilized on activated poly-hydroxybutyrate, sugarcane bagasse and the chemically modified hybrid hydrogel chitosan-alginate prepared by different strategies. Among the tested supports, chitosan-alginate chemically modified with 2,4,6-trinitrobenzenesulfonic acid rendered derivatives with the highest hydrolytic activity and thermal-stability, 45-fold more stable than soluble lipase and was then selected for further studies. The pH of maximum activity was similar for both immobilized and free lipase (pH 8.0) while optimum temperature was 5 - 10 ºC higher for the immobilized lipase. Higher yields in the butyl butyrate synthesis were found for the derivatives prepared by activation with glycidol and epichlorohydrin.
Resumo:
The triplet excited state of xanthone was generated and characterized by laser flash photolysis in acetonitrile (λmax=620 nm; t=1.8 ms) and in ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [bmim.PF6] (λmax=620 nm; t=3.0 ms). It reacts with phenols yielding the corresponding xanthone ketyl radical. Stern-Volmer plots for the reaction of triplet xanthone with phenols led to the determination of absolute rate constants for phenolic hydrogen abstraction in the order of ~10(9) Lmol-1s-1 in acetonitrile and ~10(8) Lmol-1s-1 in [bmim.PF6]. The lower diffusioncontrolled rate constant for [bmim.PF6] is responsible for the difference in the phenolic hydrogen abstraction rate constants in this solvent.
Resumo:
The objectives of this work were to produce biodegradable composites using starch and different agro-industrial wastes (coconut fiber, soy bran and sugarcane bagasse) using a baking process, and to study the effects of these components on the resultant composite properties. The addition of different residues yielded trays with different properties. Samples manufactured with soy bran showed the highest density and water uptake at relative humidities ≥ 60%. The addition of sugarcane bagasse resulted in less dense and resistant samples whereas coconut fiber composites showed the highest breaking stress. The samples fabricated in this study represent an alternative packaging option for foods with low water content.
Resumo:
Densities of glycine in aqueous solutions of ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate were determined at temperatures ranging from 283.15 to 313.15 K. The apparent molar volume, infinite dilution apparent molar volume, second derivative of the infinite dilution partial molar volume with respect to temperature, partial molar volume of transfer at infinite dilution, and the number of hydration were determined. It was found that the apparent molar volume at infinite dilution was positive, but decreased with increasing ionic liquid concentration and increased with increasing temperature. On the other hand, the partial molar volume of transfer at infinite dilution behaved in a similar manner, but was negative.
Resumo:
Two imidazolium-based ionic liquids (C4MIMTf2N and C4MIMBF4) were used to verify their influence on polyaniline (PANI) and nitrile rubber (NBR)/PANI blend properties and the vulcanization process. High conductivity values were observed for PANI-C4MIMTf2N samples and no interference was found for the C4MIMBF4 samples. These materials were added to NBR by mechanical mixing. Based on the torque results, the presence of C4MIMBF4 does not protect the vulcanization reaction of NBR with PANI as performed by C4MIMTf2N. The highest conductivity value was obtained with 7 wt. % of PANI-DSBA-C4MIMTf2N (10-6 S/cm). This result is attributed to the more effective interaction of PANI and NBR phases promoted by the ionic liquid.