12 resultados para Event-based Model
em Scielo Sa
Resumo:
ABSTRACT In the present study, onion plants were tested under controlled conditions for the development of a climate model based on the influence of temperature (10, 15, 20 and 25°C) and leaf wetness duration (6, 12, 24 and 48 hours) on the severity of Botrytis leaf blight of onion caused by Botrytis squamosa. The relative lesion density was influenced by temperature and leaf wetness duration (P <0.05). The disease was most severe at 20°C. Data were subjected to nonlinear regression analysis. Beta generalized function was used to adjust severity and temperature data, while a logistic function was chosen to represent the effect of leaf wetness on the severity of Botrytis leaf blight. The response surface obtained by the product of two functions was expressed as ES = 0.008192 * (((x-5)1.01089) * ((30-x)1.19052)) * (0.33859/(1+3.77989 * exp (-0.10923*y))), where ES represents the estimated severity value (0.1); x, the temperature (°C); and y, the leaf wetness (in hours). This climate model should be validated under field conditions to verify its use as a computational system for the forecasting of Botrytis leaf blight in onion.
Resumo:
Motivated by a recently proposed biologically inspired face recognition approach, we investigated the relation between human behavior and a computational model based on Fourier-Bessel (FB) spatial patterns. We measured human recognition performance of FB filtered face images using an 8-alternative forced-choice method. Test stimuli were generated by converting the images from the spatial to the FB domain, filtering the resulting coefficients with a band-pass filter, and finally taking the inverse FB transformation of the filtered coefficients. The performance of the computational models was tested using a simulation of the psychophysical experiment. In the FB model, face images were first filtered by simulated V1- type neurons and later analyzed globally for their content of FB components. In general, there was a higher human contrast sensitivity to radially than to angularly filtered images, but both functions peaked at the 11.3-16 frequency interval. The FB-based model presented similar behavior with regard to peak position and relative sensitivity, but had a wider frequency band width and a narrower response range. The response pattern of two alternative models, based on local FB analysis and on raw luminance, strongly diverged from the human behavior patterns. These results suggest that human performance can be constrained by the type of information conveyed by polar patterns, and consequently that humans might use FB-like spatial patterns in face processing.
Resumo:
The Soil Nitrogen Availability Predictor (SNAP) model predicts daily and annual rates of net N mineralization (NNM) based on daily weather measurements, daily predictions of soil water and soil temperature, and on temperature and moisture modifiers obtained during aerobic incubation (basal rate). The model was based on in situ measurements of NNM in Australian soils under temperate climate. The purpose of this study was to assess this model for use in tropical soils under eucalyptus plantations in São Paulo State, Brazil. Based on field incubations for one month in three, NNM rates were measured at 11 sites (0-20 cm layer) for 21 months. The basal rate was determined in in situ incubations during moist and warm periods (January to March). Annual rates of 150-350 kg ha-1 yr-1 NNM predicted by the SNAP model were reasonably accurate (R2 = 0.84). In other periods, at lower moisture and temperature, NNM rates were overestimated. Therefore, if used carefully, the model can provide adequate predictions of annual NNM and may be useful in practical applications. For NNM predictions for shorter periods than a year or under suboptimal incubation conditions, the temperature and moisture modifiers need to be recalibrated for tropical conditions.
Resumo:
A sample (n=124) of schizophrenic patients from a defined catchment area of the city os S.Paulo, Brazil, who had been consecutively admitted to hospital, was assessed for psychopathological status and social adjustment levels. Sociodemographic, socio-economic and occupational characteristics were recorded: almost 30% of the subjects had no occupation and received no social benefit, more than two-thirds had a monthly per capita income of US$ 100.00 or less. Sixty-five percent presented with Schneiderian firstrank symptoms. Nearly half the sample showed poor or very poor social adjustment in the month prior to admission. The most affected areas of social functioning were participation in the household activities, work and social withdrawal. The current mental health policy of promoting extra-mural care as an alternative to the previous hospital-based model will then mean the investment in a network of new community-based services, that give effective treatment and support to patients and their families. The need of further research into the current picture of mental disorders in the country is stressed.
Resumo:
Modeling of water movement in non-saturated soil usually requires a large number of parameters and variables, such as initial soil water content, saturated water content and saturated hydraulic conductivity, which can be assessed relatively easily. Dimensional flow of water in the soil is usually modeled by a nonlinear partial differential equation, known as the Richards equation. Since this equation cannot be solved analytically in certain cases, one way to approach its solution is by numerical algorithms. The success of numerical models in describing the dynamics of water in the soil is closely related to the accuracy with which the water-physical parameters are determined. That has been a big challenge in the use of numerical models because these parameters are generally difficult to determine since they present great spatial variability in the soil. Therefore, it is necessary to develop and use methods that properly incorporate the uncertainties inherent to water displacement in soils. In this paper, a model based on fuzzy logic is used as an alternative to describe water flow in the vadose zone. This fuzzy model was developed to simulate the displacement of water in a non-vegetated crop soil during the period called the emergency phase. The principle of this model consists of a Mamdani fuzzy rule-based system in which the rules are based on the moisture content of adjacent soil layers. The performances of the results modeled by the fuzzy system were evaluated by the evolution of moisture profiles over time as compared to those obtained in the field. The results obtained through use of the fuzzy model provided satisfactory reproduction of soil moisture profiles.
Resumo:
Azole derivatives are the main therapeutical resource against Candida albicans infection in immunocompromised patients. Nevertheless, the widespread use of azoles has led to reduced effectiveness and selection of resistant strains. In order to guide the development of novel antifungal drugs, 2D-QSAR models based on topological descriptors or molecular fragments were developed for a dataset of 74 molecules. The optimal fragment-based model (r² = 0.88, q² = 0.73 and r²pred = 0.62 with 6PCs) and descriptor-based model (r² = 0.82, q² = 0.79 and r²pred = 0.70 with 2 PCs), when analysed synergically, suggested that the triazolone ring and lipophilic properties are both important to antifungal activity.
Resumo:
Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work, a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency. The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four models that use different factors were tested, and results showed all were able to explain variation for disease incidence and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69% of disease incidence according to regression analysis.
Resumo:
The application of the Extreme Value Theory (EVT) to model the probability of occurrence of extreme low Standardized Precipitation Index (SPI) values leads to an increase of the knowledge related to the occurrence of extreme dry months. This sort of analysis can be carried out by means of two approaches: the block maxima (BM; associated with the General Extreme Value distribution) and the peaks-over-threshold (POT; associated with the Generalized Pareto distribution). Each of these procedures has its own advantages and drawbacks. Thus, the main goal of this study is to compare the performance of BM and POT in characterizing the probability of occurrence of extreme dry SPI values obtained from the weather station of Ribeirão Preto-SP (1937-2012). According to the goodness-of-fit tests, both BM and POT can be used to assess the probability of occurrence of the aforementioned extreme dry SPI monthly values. However, the scalar measures of accuracy and the return level plots indicate that POT provides the best fit distribution. The study also indicated that the uncertainties in the parameters estimates of a probabilistic model should be taken into account when the probability associated with a severe/extreme dry event is under analysis.
Resumo:
In this paper a computer program to model and support product design is presented. The product is represented through a hierarchical structure that allows the user to navigate across the products components, and it aims at facilitating each step of the detail design process. A graphical interface was also developed, which shows visually to the user the contents of the product structure. Features are used as building blocks for the parts that compose the product, and object-oriented methodology was used as a means to implement the product structure. Finally, an expert system was also implemented, whose knowledge base rules help the user design a product that meets design and manufacturing requirements.
Resumo:
This article discusses, from the standpoint of cellular biology, the deterministic and indeterministic androgenesis theories. The role of the vacuole and of various types of stresses on deviation of the microspore from normal development and the point where androgenetic competence is acquired are examined. Based on extensive literature review and data on wheat studies from our laboratory, a model for androgenetic capacity of pollen grain is proposed. A two point deterministic model for in vitro androgenesis is our proposal for acquisition of androgenetic potential of the pollen grain: the first switch point would be early meiosis and the second switch point the uninucleate pollen stage, because the elimination of cytoplasmatic sporophytic determinants takes place at those two strategic moments. Any abnormality in this process allowing the maintenance of sporophytic informational molecules results in the absence of establishment of a gametophytic program, allowing the reactivation of the embryogenic process
Resumo:
In the present study, using noise-free simulated signals, we performed a comparative examination of several preprocessing techniques that are used to transform the cardiac event series in a regularly sampled time series, appropriate for spectral analysis of heart rhythm variability (HRV). First, a group of noise-free simulated point event series, which represents a time series of heartbeats, was generated by an integral pulse frequency modulation model. In order to evaluate the performance of the preprocessing methods, the differences between the spectra of the preprocessed simulated signals and the true spectrum (spectrum of the model input modulating signals) were surveyed by visual analysis and by contrasting merit indices. It is desired that estimated spectra match the true spectrum as close as possible, showing a minimum of harmonic components and other artifacts. The merit indices proposed to quantify these mismatches were the leakage rate, defined as a measure of leakage components (located outside some narrow windows centered at frequencies of model input modulating signals) with respect to the whole spectral components, and the numbers of leakage components with amplitudes greater than 1%, 5% and 10% of the total spectral components. Our data, obtained from a noise-free simulation, indicate that the utilization of heart rate values instead of heart period values in the derivation of signals representative of heart rhythm results in more accurate spectra. Furthermore, our data support the efficiency of the widely used preprocessing technique based on the convolution of inverse interval function values with a rectangular window, and suggest the preprocessing technique based on a cubic polynomial interpolation of inverse interval function values and succeeding spectral analysis as another efficient and fast method for the analysis of HRV signals
Resumo:
Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.