253 resultados para wheat yield
em Scielo Saúde Pública - SP
Resumo:
Swine residue (SR) applied as nutrient source of crops such as corn, bean, soybean and wheat, besides representing an environmental-friendly way of disposing of organic waste resulting from swine production, may significantly increase grain yields, replacing mineral fertilizer. The objective was to evaluate the effect of SR rates on corn, common bean, soybean and wheat yields from 2002 to 2007, in comparison with mineral fertilizer. The experiment was carried out at the Instituto Agronômico do Paraná - IAPAR, Pato Branco, PR and consisted of increasing SR rates (0, 15, 30, 45, and 60 m³ ha-1) and one treatment with mineral fertilizer (NPK 4-30-10), using 250 kg ha-1 for bean and 300 kg ha-1 for corn, soybean and wheat. Also, in the treatment with mineral fertilizer, 60, 120 and 90 kg ha-1 N was applied as topdressing to bean, corn and wheat, respectively. There were significant increases of grain yield in all evaluated years and crops with increasing SR rates, especially in the grass species under study. Also, with increasing SR rates applied every six months, K, P, Ca and Mg were accumulated in the soil and the pH increased. The application of 60 m³ ha-1 SR increased yields and exceeded the yield obtained with the recommended mineral fertilizer, indicating this amount as adequate for these crops.
Resumo:
Soil management influences the chemical and physical properties of soil. Chemical conditions have been thoroughly studied, while the role of soil physical conditions regarding crop yield has been neglected. This study aimed to analyze the wheat yield and its relationship with physical properties of an Oxisol under no-tillage (NT). The study was carried out between 2010 and 2011, in Reserva do Iguaçu, State of Paraná, Brazil, on the Campo Bonito farm, after 25 years of NT management. Based on harvest maps of barley (2006), wheat (2007) and maize (2009) of a plot (150 ha), zones with higher and lower yield potential (Z1 and Z2, respectively) were identified. Sampling grids with 16 units (50 x 50 m) and three sampling points per unit were established. The wheat grain yield (GY) and water infiltration capacity (WIC) were evaluated in 2010. Soil samples with disturbed and undisturbed structure were collected from the 0.00-0.10 and 0.10-0.20 m layers. The former were used to determine soil organic carbon (Corg) levels and the latter to determine soil bulk density (BD), total porosity (TP), macroporosity (Mac), and microporosity (Mic). Soil penetration resistance (PR) and water content (SWC) were also evaluated. The wheat GY of the whole plot was close to the regional average and the yield between the zones differed significantly, i.e. 22 % higher in Z1 than in Z2. No significant variation in Mic was observed between zones, but Z1 had higher Corg levels, SWC, TP and Mac and lower BD than Z2 in both soil layers, as well as a lower PR than Z2 in the 0.00-0.10 m layer. Therefore, soil physical conditions were more restrictive in Z2, in agreement with wheat yield and zone yield potential defined a priori, based on the harvest maps. Soil WIC in Z1 was significantly higher (30 %) than in Z2, in agreement with the results of TP and Mac which were also higher in Z1 in both soil layers. The correlation analysis of data of the two layers showed a positive relationship between wheat GY and the soil properties TP, SWC and WIC.
Resumo:
Emex australis and E. spinosa are significant weed species in wheat and other crops. Information on the extent of competition of the Emex species will be helpful to access yield losses in wheat. Field experiments were conducted to quantify the interference of tested weed densities each as single or mixture of both at 1:1 on their growth and yield, wheat yield components and wheat grain yield losses in two consecutive years. Dry weight of both weed species increased from 3-6 g m-2 with every additional plant of weed, whereas seed number and weight per plant decreased with increasing density of either weed. Both weed species caused considerable decrease in yield components like spike bearing tillers, number of grains per spike, 1000-grain weight of wheat with increasing density population of the weeds. Based on non-linear hyperbolic regression model equation, maximum yield loss at asymptotic weed density was estimated to be 44 and 62% with E. australis, 56 and 70% with E. spinosa and 63 and 72% with mixture of both species at 1:1 during both year of study, respectively. It was concluded that E. spinosa has more competition effects on wheat crop as compared to E. australis.
Resumo:
ABSTRACT Understanding the critical period of weed competition is indispensable in the development of an effective weed management program in field crops. Current experiment was planned to evaluate the critical growth period ofSetaria and level of yield losses associated with delay in weeding in rain-fed drip irrigated wheat production system of Saudi Arabia. Field experiment was conducted to evaluate the effect of weeding interval (07-21, 14-28, 21-35, 28-42 and 35-49 days after sowing) and drought stress (75% and 50% of field capacity) on Setaria growth, wheat yield and water use efficiency. Season long weedy check and wellwatered (100% FC) plots were also maintained for comparison. Weeding interval and drought stress significantly (p ≤ 0.05) affected the growth and yield of Setaria and wheat. Drought stress from 75% to 50% FC resulted in reductions of 29-40% in Setaria height, 14-27% in Setaria density and 11-26% in Setaria dry biomass. All weeding intervals except 35-49 DAS significantly suppressedSetaria growth as compared with control. Delay in weeding increased weed-crop competition interval and reduced wheat yield and yield contributors. Therefore, the lowest yield of 1836 kg ha-1 was attained for weeding interval of 35-49 DAS at 50% FC. Water use efficiency and harvest index increased with decreasing FC levels but reduced with delay in weeding. Correlation analysis predicted negative association ofSetariadensity with wheat yield and yield contributors and the highest negative association was for harvest index (-0.913) and water use efficiency (-0.614). Early management of Setaria is imperative for successful wheat production otherwise yield losses are beyond economical limits.
Resumo:
The use of winter legumes in southern Brazil is hindered by the slow growth of these species during establishment exposing soil surface to erosion. Introduction of these species along with spring wheat (Triticum aestivum L.) was studied as a means of increasing ground cover during their initial establishment period, without reducing wheat grain yield. Two experiments were conducted in nearby areas, one in each year. Birdsfoot trefoil (Lotus corniculatus L.), red clover (Trifolium pratense L.) cultivar Quiñequelli, white clover (T. repens L.), and arrowleaf clover (T. vesiculosum Savi) did not reduce cereal yield in either year. Wheat yield was reduced by intercropped red clover cultivar Kenland and by subclover (T. subterraneum L.) in the first year. No grain yield differences due to intercropping with any legume were detected in the second year, when rainfall was below normal. Intercropping with wheat showed to be a practical alternative to enhance ground cover at establishing forage legumes.
Resumo:
In general, lodging has been controlled by restricting nitrogen fertilizer application and/or using short cultivars. Growth retardants can also be used to solve this problem.The objective of this study was to evaluate the effect of rates and application times of three growth retardants on Pioneiro wheat cultivar. The trial was carried out in Viçosa-MG, from May to September 2005, in a factorial and hierarchical scheme, in a randomized block design with four replications and a control treatment. The treatments consisted of 500, 1,000 and 1,500 g ha-1 of chlormequat; 62.5, 125 and 187.5 g ha-1 of trinexapac-ethyl and 40, 80 and 120 g ha-1 of paclobutrazol applied at growth stages 6 or 8, growth stage used on the scale of Feeks and Large, and a control treatment without growth retardant application. Only trinexapac-ethyl and chlormequat were efficient in reducing plant height; the effect of chlormequat and paclobutrazol on plant height was independent of the application time, but the trinexapac-ethyl at growth stage 8 produced shorter plant height than at stage 6. Increasing growth retardant rates produced shorter plant heights; chlormequat and paclobutrazol did not affect grain yield. However, the highest trinexapac-ethyl rates reduced wheat yield.
Resumo:
Two field experiments were conducted to evaluate the effects of multispecies weed competition on wheat grain yield and to determine their economic threshold on the crop. The experiments were conducted in 2002, on two sites in Iran: at the Agricultural Research Station on Ferdowsi University of Mashhad (E1) and on the fields of Shirvan's Agricultural College (E2). A 15 x 50 m area of a 15 ha wheat field in E1 and a 15 x 50 m area of a 28 ha wheat field in E2 were selected as experimental sites. These areas were managed like other parts of the fields, except for the use of herbicides. At the beginning of the shooting stage, 30 points were randomly selected by dropping a 50 x 50 cm square marker on each site. The weeds present in E1 were: Avena ludoviciana, Chenopodium album, Solanum nigrum, Stellaria holostea, Convolvulus spp., Fumaria spp., Sonchus spp., and Polygonum aviculare. In E2 the weeds were A. ludoviciana, Erysimum sp., P. aviculare, Rapistrum rugosum, C. album, Salsola kali, and Sonchus sp. The data obtained within the sampled squares were submitted to regression equations and weeds densities were calculated in terms of TCL (Total Competitive Load). The regression analysis model indicated that only A. ludoviciana, Convolvulus spp. and C. album, in E1; and A. ludoviciana, S. kali, and R. rugosum, in E2 had a significant effect on the wheat yield reduction. Weed economic thresholds were 5.23 TCL in E1 and 6.16 TCL in E2; which were equivalent to 5 plants m-2 of A. ludoviciana or 12 plants m-2 of Convolvulus spp. or 19 plants m-2 of C. album in E1; and 6 plants m-2 A. ludoviciana, 13 plants m-2 S. kali and 27 plants m-2 R. rugosum in E2. Simulations of economic weed thresholds using several wheat grain prices and weed control costs allowed a better comparison of the experiments, suggesting that a more competitive crop at location E1 than at E2 was the cause of a lower weed competitive ability at the first location.
Resumo:
The use of herbicides, even in tolerant crops, can cause stress evidenced by increase phytotoxicity affecting growth and development. The objectives of this study were to evaluate herbicides effect from different mechanisms of action in photosynthetic and oxidative stress parameters, as well visual phytotoxicity and wild radish control in wheat crop, cultivar Quartzo. Two trials were conducted where the first one evaluated the photosynthetic parameters on wheat plants in two seasons collection, following the application of herbicides bentazon, clodinafop, iodosulfuron, metribuzin, metsulfuron and 2,4-D; and the second one evaluated wild radish (Raphanus sativus) control, wheat phytotoxicity and yield due to bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D herbicides application. Photosynthetic rate, stomatal conductance and transpiration were negatively affected by metribuzin, metsulfuron and 2,4-D herbicides at 24 and 120 HAS (hours after spraying) compared to control. Oxidative stress was similar or lower to control, when herbicide was applied and, in general, there was no difference between application times. Lipid peroxidation, catalase activity and phenols were higher in the first collection time. The application of herbicides iodosulfuron and 2,4-D reduces chlorophylls and carotenoids in wheat. Herbicides bentazon, iodosulfuron, metribuzin, metsulfuron and 2,4-D are selective to wheat, cultivar Quartzo and do not affect wheat yield. 2,4-D, metribuzin and iodosulfuron are more efficient for wild radish control.
Resumo:
Statistical analyses of an experiment on wheat were carried out with the aid of Mitscherlich's law. The experiment was made in Ponta Grossa, Paraná, by the Ministry of Agriculture of Brasil. Lime, in the form of Ca(OH)2, was applied at the levels of 0, 2, 4, 6 and 8 metric tons per hectare. A 5 x 5 Latin square was used. Lime was applied in 1940 and wheat was cultivated in the same plots for several years. The following fertilizers were annually used for all plots: NaNO3 100 kilograms per hectare, Superphosphate 350 kilograms per hectare, K2S04 80 kilograms per hectare. The statistical analysis of the data collected in 1941, 1942, 1943, 1947 and 1948, carried out in accordance with the methods previously introduced by Pimentel Gomes and Malavolta (1949 a, 1949 b) and Pimentel Gomes (1950), proved: I. That Mitscherlich's law could be correctly applied to the data. II. That there was a statistically significant effect of lime on wheat yield. III. That the optimum amount of lime to be applied to the soil lies between 5 and 15 hundred kilograms of Ca(OH)2 per hectare. IV. That there is a migration of calcium from some plots to others, in such a way that the data obtained in 1947 and 1948 are not representative of the amounts of lime applied in 1940. V. That the analysis of variance can be used, as the Bartlett test shows that the variances at the distinct levele of lime application are not statistically different. It must be noted that, with improved variety and fertilization, the yield was rised to about 2500 kilograms per hectare in 1947, and 1600 in 1948, being only of about 100 kilograms per hectare in 1940.
Resumo:
ABSTRACT Applications of phosphogypsum (PG) provide nutrients to the soil and reduce Al3+ activity, favoring soil fertility and root growth, but allow Mg2+ mobilization through the soil profile, resulting in variations in the PG rate required to achieve the optimum crop yield. This study evaluated the effect of application rates and splitting of PG on soil fertility of a Typic Hapludox, as well as the influence on annual crops under no-tillage. Using a (4 × 3) + 1 factorial structure, the treatments consisted of four PG rates (3, 6, 9, and 12 Mg ha-1) and three split applications (P1 = 100 % in 2009; P2 = 50+50 % in 2009 and 2010; P3 = 33+33+33 % in 2009, 2010 and 2011), plus a control without PG. The soil was sampled six months after the last PG application, in stratified layers to a depth of 0.8 m. Corn, wheat and soybean were sown between November 2011 and December 2012, and leaf samples were collected for analysis when at least 50 % of the plants showed reproductive structures. The application of PG increased Ca2+ concentrations in all sampled soil layers and the soil pH between 0.2 and 0.8 m, and reduced the concentrations of Al3+ in all layers and of Mg2+ to a depth of 0.6 m, without any effect of splitting the applications. The soil Ca/Mg ratio increased linearly to a depth of 0.6 m with the rates and were found to be higher in the 0.0-0.1 m layer of the P2 and P3 treatments than without splitting (P1). Sulfur concentrations increased linearly by application rates to a depth of 0.8 m, decreasing in the order P3>P2>P1 to a depth of 0.4 m and were higher in the treatments P3 and P2 than P1 between 0.4-0.6 m, whereas no differences were observed in the 0.6-0.8 m layer. No effect was recorded for K, P and potential acidity (H+Al). The leaf Ca and S concentration increased, while Mg decreased for all crops treated with PG, and there was no effect of splitting the application. The yield response of corn to PG rates was quadratic, with the maximum technical efficiency achieved at 6.38 Mg ha-1 of PG, while wheat yield increased linearly in a growing season with a drought period. Soybean yield was not affected by the PG rate, and splitting had no effect on the yield of any of the crops. Phosphogypsum improved soil fertility in the profile, however, Mg2+ migrated downwards, regardless of application splitting. Splitting the PG application induced a higher Ca/Mg ratio in the 0.0-0.1 m layer and less S leaching, but did not affect the crop yield. The application rates had no effect on soybean yield, but were beneficial for corn and, especially, for wheat, which was affected by a drought period during growth.
Resumo:
The objective of this study was to assess the impact of genetic breeding on grain yield, and to identify the physiological traits associated to the increment in yield and their related growth processes, for wheat cultivars grown in Southern Brazil, in the past five decades. Seven wheat cultivars released between 1940 and 1992, were compared for physiological aspects associated with grain yield. Grain yield, biological yield, biomass partitioning, harvest index and grain yield components were also determined. The number of grains per square meter was more affected by plant breeding and was better correlated with grain yield (r = 0.94, p<0.01) than with grain weight (r = -0.39ns). The higher number of grains per square meter was better correlated with the number of grains per spike in the modern cultivars than in the older ones. The genetic gain in grain yield was 44.9 kg ha-1 per year, reflecting important efforts of the breeding programs carried out in Southern Brazil. Grain yield changes, during the period of study, were better associated with biomass production (r = 0.78, p<0.01) than with harvest index (r = 0.65, p<0.01).
Resumo:
Abstract:The objective of this work was to characterize the performance of elite wheat genotypes from different Brazilian breeding programs for traits associated with grain yield and preharvest sprouting. The study was conducted in 2010 and 2011 in the municipality of Capão do Leão, in the state of Rio Grande do Sul, Brazil, in a randomized complete block design with three replicates. Thirty-three wheat genotypes were evaluated for traits related to preharvest sprouting and grain yield. The estimate of genetic distance was used to predict potential combinations for selection of plants with high grain yield and tolerance to preharvest sprouting. The combined analysis of sprouted grains and falling number shows that the TBIO Alvorada, TBIO Mestre, Frontana, Fundacep Raízes, Fundacep Cristalino, and BRS Guamirim genotypes are tolerant to preharvest sprouting. Combinations of TBIO Alvorada and TBIO Mestre with Fundacep Cristalino show high potential for recovering superior genotypes for high grain yield and tolerance to preharvest sprouting.
Resumo:
Genotype (G), environment (E) and their interaction (GEI) play an important role in the final expression of grain yield and quality attributes. A multi-environment trial in wheat was conducted to evaluate the magnitude of G, E and GEI effects on grain yield and quality of wheat genotypes under the three rainfed locations (hereafter environment) of Central Anatolian Plateau of Turkey, during the 2012-2013 cropping season. Grain yield (GY) and analyses of test weight (TW), protein content (PC), wet gluten content (WGC), grain hardness (GH), thousand kernel weight (TKW) and Zeleny sedimentation volume (ZSV) were determined. Allelic variations of high and low molecular weight glutenin subunits (HMW-GS and LMW-GS) and 1B/1R translocation were determined in all genotypes evaluated. Both HMW-Glu-1, 17+18, 5+10 and LMW-Glu-3 b, b, b corresponded to genotypes possessing medium to good quality attributes. Large variability was found among most of the quality attributes evaluated; wider ranges of quality traits were observed in the environments than among the genotypes. The importance of the growing environment effects on grain quality was proved, suggesting that breeders' quality objectives should be adapted to the targeted environments.
Resumo:
NBPT (N-(n-butyl) thiophosphoric triamide), a urease inhibitor, has been reported as one of the most promising compounds to maximize urea nitrogen use in agricultural systems. The objective of this study was to evaluate the performance of irrigated wheat fertilized with urea or urea + NBPT as single or split application. The experiment was conducted from June to October 2006 in Viçosa, MG, Brazil. The experimental design followed a 2×2 factorial scheme, in which urea or urea + NBPT were combined with two modes of application: full dose at sowing (60kg ha-1) or split (20kg ha-1 at sowing + 40kg ha-1 as topdressing at tillering), in randomized blocks with ten replications. The split application of nitrogen fertilization does not improve the yield wheat under used conditions. The use of urease inhibitor improves the grain yield of wheat crop when urea is applied in topdressing at tillering, but its use does not promote difference when urea is applied in the furrow at planting.
Resumo:
Abstract: There is a need for heat tolerant wheat cultivars adapted to the expansion of cultivation areas in warmer regions due to the high demand of this cereal for human consumption. The objective of this study was to evaluate the effect of high temperatures on grain yield and yield components of wheat and characterize heat tolerant wheat genotypes at different development stages. The genotypes were evaluated in the field with and without heat stress. High temperatures reduced the number of spikelets per spike (21%), number of grains per spike (39%), number of grains per spikelet (23%), 1000-grain weight (27%) and grain yield (79%). Cultivars MGS 1 Aliança, Embrapa 42, IAC 24-Tucuruí and IAC 364-Tucuruí III are the most tolerant to heat stress between the stages double ridge and terminal spikelet; MGS 1 Aliança, BRS 264, IAC 24-Tucuruí, IAC 364-Tucuruí III and VI 98053, between meiosis and anthesis; and BRS 254, IAC-24-Tucuruí, IAC-364-Tucuruí III and VI 98053, between anthesis and physiological maturity. High temperatures reduce grain yield and yield components. The number of grains per spike is the most reduced component under heat stress. The genotypes differed in tolerance to heat stress in different developmental stages.