469 resultados para virus glycoprotein

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-cancer DNA vaccines have attracted growing interest as a simple and non-invasive method for both the treatment and prevention of tumors induced by human papillomaviruses. Nonetheless, the low immunogenicity of parenterally administered vaccines, particularly regarding the activation of cytotoxic CD8+ T cell responses, suggests that further improvements in both vaccine composition and administration routes are still required. In the present study, we report the immune responses and anti-tumor effects of a DNA vaccine (pgD-E7E6E5) expressing three proteins (E7, E6, and E5) of the human papillomavirus type 16 genetically fused to the glycoprotein D of the human herpes simplex virus type 1, which was administered to mice by the intradermal (id) route using a gene gun. A single id dose of pgD-E7E6E5 (2 µg/dose) induced a strong activation of E7-specific interferon-γ (INF-γ)-producing CD8+ T cells and full prophylactic anti-tumor effects in the vaccinated mice. Three vaccine doses inhibited tumor growth in 70% of the mice with established tumors. In addition, a single vaccine dose consisting of the co-administration of pgD-E7E6E5 and the vector encoding interleukin-12 or granulocyte-macrophage colony-stimulating factor further enhanced the therapeutic anti-tumor effects and conferred protection to 60 and 50% of the vaccinated mice, respectively. In conclusion, id administration of pgD-E7E6E5 significantly enhanced the immunogenicity and anti-tumor effects of the DNA vaccine, representing a promising administration route for future clinical trials.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We describe the impact of subtype differences on the seroreactivity of linear antigenic epitopes in envelope glycoprotein of HIV-1 isolates from different geographical locations. By computer analysis, we predicted potential antigenic sites of envelope glycoprotein (gp120 and gp4l) of this virus. For this purpose, after fetching sequences of proteins of interest from data banks, values of hydrophilicity, flexibility, accessibility, inverted hydrophobicity, and secondary structure were considered. We identified several potential antigenic epitopes in a B subtype strain of envelope glycoprotein of HIV-1 (IIIB). Solid- phase peptide synthesis methods of Merrifield and Fmoc chemistry were used for synthesizing peptides. These synthetic peptides corresponded mainly to the C2, V3 and CD4 binding sites of gp120 and some parts of the ectodomain of gp41. The reactivity of these peptides was tested by ELISA against different HIV-1-positive sera from different locations in India. For two of these predicted epitopes, the corresponding Indian consensus sequences (LAIERYLKQQLLGWG and DIIGDIRQAHCNISEDKWNET) (subtype C) were also synthesized and their reactivity was tested by ELISA. These peptides also distinguished HIV-1-positive sera of Indians with C subtype infections from sera from HIV-negative subjects.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Several studies have recently shown the use of recombinant rabies virus as potential vector-viral vaccine for HIV-1. The sequence homology between gp 120 and rabies virus glycoprotein has been reported. The McCoy cell line has therefore been used to show CD4+ or CD4+ like receptors. Samples of HIV-1 were isolated, when plasma of HIV-1 positive patients was inoculated in the McCoy cell line. The virus infection was then studied during successive virus passages. The proteins released in the extra cellular medium were checked for protein activity, by exposure to SDS Electrophoresis and blotting to nitro-cellulose filter, then reacting with sera of HIV positive and negative patients. Successive passages were performed, and showed viral replication, membrane permeabilization, the syncytium formation, and the cellular lysis (cytopathic effect). Flow cytometry analysis shows clear evidence that CD4+ receptors are present in this cell line, which enhances the likelihood of easy isolation and replication of HIV. The results observed allow the use of this cell line as a possible model for isolating HIV, as well as for carrying out studies of the dynamics of viral infection in several situations, including exposure to drugs in pharmacological studies, and possibly studies and analyses of the immune response in vaccine therapies.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Genome sequences for Schistosoma japonicum and Schistosoma mansoni are now available. The schistosome genome encodes ~13,000 protein encoding genes for which the function of only a minority is understood. There is a valuable role for transgenesis in functional genomic investigations of these new schistosome gene sequences. In gain-of-function approaches, transgenesis can lead to integration of transgenes into the schistosome genome which can facilitate insertional mutagenesis screens. By contrast, transgene driven, vector-based RNA interference (RNAi) offers powerful loss-of-function manipulations. Our laboratory has focused on development of tools to facilitate schistosome transgenesis. We have investigated the utility of retroviruses and transposons to transduce schistosomes. Vesicular stomatitis virus glycoprotein (VSVG) pseudotyped murine leukemia virus (MLV) can transduce developmental stages of S. mansoni including eggs. We have also observed that the piggyBac transposon is transpositionally active in schistosomes. Approaches with both VSVG-MLV and piggyBac have resulted in somatic transgenesis and have lead to integration of active reporter transgenes into schistosome chromosomes. These findings provided the first reports of integration of reporter transgenes into schistosome chromosomes. Experience with these systems is reviewed herewith, along with findings with transgene mediated RNAi and germ line transgenesis, in addition to pioneering and earlier reports of gene manipulation for schistosomes.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The hepatitis C virus (HCV) encodes approximately 10 different structural and non-structural proteins, including the envelope glycoprotein 2 (E2). HCV proteins, especially the envelope proteins, bind to cell receptors and can damage tissues. Endothelial inflammation is the most important determinant of fibrosis progression and, consequently, cirrhosis. The aim of this study was to evaluate and compare the inflammatory response of endothelial cells to two recombinant forms of the HCV E2 protein produced in different expression systems (Escherichia coli and Pichia pastoris). We observed the induction of cell death and the production of nitric oxide, hydrogen peroxide, interleukin-8 and vascular endothelial growth factor A in human umbilical vein endothelial cells (HUVECs) stimulated by the two recombinant E2 proteins. The E2-induced apoptosis of HUVECs was confirmed using the molecular marker PARP. The apoptosis rescue observed when the antioxidant N-acetylcysteine was used suggests that reactive oxygen species are involved in E2-induced apoptosis. We propose that these proteins are involved in the chronic inflammation caused by HCV.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The authors previously reported the construction of a glycoprotein E-deleted (gE-) mutant of bovine herpesvirus type 1.2a (BHV-1.2a). This mutant, 265gE-, was designed as a vaccinal strain for differential vaccines, allowing the distinction between vaccinated and naturally infected cattle. In order to determine the safety and efficacy of this candidate vaccine virus, a group of calves was inoculated with 265gE-. The virus was detected in secretions of inoculated calves to lower titres and for a shorter period than the parental virus inoculated in control calves. Twenty one days after inoculation, the calves were challenged with the wild type parental virus. Only mild signs of infection were detected on vaccinated calves, whereas non-vaccinated controls displayed intense rhinotracheitis and shed virus for longer and to higher titres than vaccinated calves. Six months after vaccination, both vaccinated and control groups were subjected to reactivation of potentially latent virus. The mutant 265gE- could not be reactivated from vaccinated calves. The clinical signs observed, following the reactivation of the parental virus, were again much milder on vaccinated than on non-vaccinated calves. Moreover, parental virus shedding was considerably reduced on vaccinated calves at reactivation. In view of its attenuation, immunogenicity and protective effect upon challenge and reactivation with a virulent BHV-1, the mutant 265gE- was shown to be suitable for use as a BHV-1 differential vaccine virus.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Two recombinant baculoviruses were produced in order to obtain a bovine viral diarrhea virus (BVDV) immunogen: AcNPV/E2 expressing E2 glycoprotein, and AcNPV/E0E1E2 expressing the polyprotein region coding for the three structural proteins of BVDV (E0, E1, and E2). Mice were immunized with Sf9 cells infected with the recombinant baculoviruses in a water in oil formulation and the production of neutralizing antibodies was evaluated. Since E2 elicited higher neutralizing antibody titers than E0-E1-E2 polyprotein, it was selected to immunize cattle. Calves received two doses of recombinant E2 vaccine and were challenged with homologous BVDV 37 days later. The recombinant immunogen induced neutralizing titers which showed a mean value of 1.5 ± 0.27 on the day of challenge and reached a top value of 3.36 ± 0.36, 47 days later (84 days post-vaccination). On the other hand, sera from animals which received mock-infected Sf9 cells did not show neutralizing activity until 25 days post-challenge (62 days post-vaccination), suggesting that these antibodies were produced as a consequence of BVDV challenge. Even when no total protection was observed in cattle, in vitro viral neutralization assays revealed that the recombinant immunogen was able to induce neutralizing antibody synthesis against the homologous strain as well as against heterologous strains in a very efficient way.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A retrovirus infecting a Brazilian AIDS patient was isolated and characterized in terms of its reactivity with sera from individuals infected with human immunodeficiency viruses 1 and 2 (HIV-1 and HIV-2). The Western blot analysis revealed that the Brazilian isolate is very similar to the well characterized HIV-1 strain. The serum of the patient from whom the virus was isolated did not react with the 140 kDa envelope glycoprotein specific for HIV-2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

One of the methods used for controlling cattle rabies in Brazil consists of vaccination. Sometimes, however, rabies occurs in cattle supposedly protected. Since rabies vaccine batches are officially controlled by tests performed on laboratory animals, it is questionable whether the minimal mandatory requirements really correspond to immunogenicity in the target species. We have analyzed the association among potencies of rabies vaccines tested by the NIH test, the contents and form (free-soluble or virus-attached) of rabies glycoprotein (G) in the vaccine batches, and the virus-neutralizing antibodies (VNA) titers elicited in cattle. No correlation was found between G contents in the vaccine batches and the NIH values, whatever the presentation of G. There was no correlation either between NIH values and VNA titers elicited in cattle. There was, however, a positive correlation (r = 0.8681; p = 0.0001) between the amounts of virion-attached G present in the vaccine batches and VNA elicited in cattle. This was not observed when the same analysis was performed with total-glycoprotein or free-soluble glycoprotein. The study demonstrated that NIH values can not predict the effect of the immunogen in cattle. On the other hand, the quantification of virus-attached rabies glycoprotein has a strong correlation with VNA elicited in cattle.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The variability of the G glycoprotein from human respiratory syncytial viruses (HRSV) (groups A and B) isolated during 17 consecutive epidemics in Montevideo, Uruguay have been analyzed. Several annual epidemics were studied, where strains from groups A and B circulated together throughout the epidemics with predominance of one of them. Usually, group A predominates, but in some epidemics group B is more frequently detected. To analyse the antigenic diversity of the strains, extracts of cells infected with different viruses of group A were tested with a panel of anti-G monoclonal antibodies (MAbs). The genetic variability of both groups was analyzed by sequencing the C-terminal third of the G protein gene. The sequences obtained together with previously published sequences were used to perform phylogenetic analyses. The data from Uruguayan isolates, together with those from the rest of the world provide information regarding worldwide strain circulation. Phylogenetic analyses of HRSV from groups A and B show a model of evolution analogous to the one proposed for influenza B viruses providing information that would be beneficial for future immunization programs and to design safe vaccines.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lactotransferrin, also known as lactoferrin, is an iron binding glycoprotein that displays antiviral activity against many different infectious agents, including human immunodeficiency virus (HIV)-1. Lactotransferrin is present in the breast milk and in the female genitourinary mucosa and it has been hypothesised as a possible candidate to prevent mother-to-child HIV-1 transmission. To verify if two functional polymorphisms, Thr29Ala and Arg47Lys, in the lactotransferrin encoding gene (LTF) could affect HIV-1 infection and vertical transmission, a preliminary association study was performed in 238 HIV-1 positive and 99 HIV-1 negative children from Brazil, Italy, Africa and India. No statistically significant association for the Thr29Ala and Arg47Lys LTF polymorphisms and HIV-1 susceptibility in the studied populations was found. Additionally LTF polymorphisms frequencies were compared between the four different ethnic groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Twelve Brazilian isolates and one reference vaccine strain of avian infectious bronchitis virus (IBV) were propagated in embryonating chicken eggs. The entire S1 glycoprotein gene of these viruses was analysed by reverse-transcriptase-polymerase chain reaction and restriction fragment length polymorphism (RT-PCR-RFLP), using the restriction enzymes HaeIII, XcmI and BstyI. The RFLP patterns led to the classification of these isolates into five distinct genotypes: A, B, C, D and Massachusetts. Five of twelve isolates were grouped in Massachusetts genotype and the remaining seven viruses were classified into four distinct genotypes: A (2), B (2), C (2) or D (1). Such genotyping classification agreed with previous immunological analysis for most of these viruses, highlighting the occurrence of a relevant variability among the IBV strains that are circulating in Brazilian commercial poultry flocks.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Venereal infection of seronegative heifers and cows with bovine herpesvirus type 1.2 (BoHV-1.2) frequently results in vulvovaginitis and transient infertility. Parenteral immunization with inactivated or modified live BoHV-1 vaccines often fails in conferring protection upon genital challenge. We herein report an evaluation of the immune response and protection conferred by genital vaccination of heifers with a glycoprotein E-deleted recombinant virus (SV265gE-). A group of six seronegative heifers was vaccinated with SV265gE- (0,2mL containing 10(6.9)TCID50) in the vulva submucosa (group IV); four heifers were vaccinated intramuscularly (group IM, 1mL containing 10(7.6)TCID50) and four heifers remained as non-vaccinated controls. Heifers vaccinated IV developed mild, transient local edema and hyperemia and shed low amounts of virus for a few days after vaccination, yet a sentinel heifer maintained in close contact did not seroconvert. Attempts to reactivate the vaccine virus in two IV vaccinated heifers by intravenous administration of dexamethasone (0.5mg/kg) at day 70 pv failed since no virus shedding, recrudescence of genital signs or seroconversion were observed. At day 70 pv, all vaccinated and control heifers were challenged by genital inoculation of a highly virulent BoHV-1.2 isolate (SV56/90, 10(7.1)TCID50/animal). After challenge, virus shedding was detected in genital secretions of control animals for 8.2 days (8-9); in the IM group for 6.2 days (4-8 days) and during 5.2 days (5-6 days) in the IV group. Control non-vaccinated heifers developed moderate (2/4) or severe (2/4) vulvovaginitis lasting 9 to 13 days (x: 10.7 days). The disease was characterized by vulvar edema, vulvo-vestibular congestion, vesicles progressing to coalescence and erosions, fibrino-necrotic plaques and fibrinopurulent exudate. IM vaccinated heifers developed mild (1/3) or moderate (3/4) genital lesions, lasting 10 to 12 days (x: 10.7 days); and IV vaccinated heifers developed mild and transient vulvovaginitis (3/4) or mild to moderate genital lesions (1/4). In the IV group, the clinical signs lasted 4 to 8 days (x: 5.5 days). Clinical examination of the animals after challenge revealed that vaccination by both routes conferred some degree of protection, yet IV vaccination was clearly more effective in reducing the severity and duration of clinical disease. Furthermore, IV vaccination reduced the period of virus shedding in comparison with both groups. Taken together, these results demonstrate that SV265gE- is sufficiently attenuated upon IV vaccination in a low-titer dosis, is not readily reactivated after corticosteroid treatment and lastly, and more importantly, confers local protection upon challenge with a high titer of a virulent heterologous BoHV-1 isolate. Therefore, the use of this recombinant for genital immunization may be considered for prevention of BoHV-1-associated genital disease in the field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The immunogenicity of an inactivated, experimental vaccine based on a bovine herpesvirus type 5 strain defective in thymidine kinase and glycoprotein E (BoHV-5 gE/TKΔ) was evaluated in cattle and the results were compared with a vaccine containing the parental BoHV-5 strain (SV507/99). To formulate the vaccines, each virus (wildtype SV507/99 and BoHV-5 gE/TK∆) was multiplied in cell culture and inactivated with binary ethyleneimine (BEI). Each vaccine dose contained approximately of 10(7.5) TCID50 of inactivated virus mixed with an oil-based adjuvant (46:54). Forty calves, 6 to 9-months-old, were allocated into two groups of 20 animals each and vaccinated twice (days 0 and 22pv) by the subcutaneous route with either vaccine. Serum samples collected at day 0 and at different intervals after vaccination were tested for virus neutralizing (VN) antibodies against the parental virus and against heterologous BoHV-5 and BoHV-1 isolates. The VN assays demonstrated seroconversion to the respective homologous viruses in all vaccinated animals after the second vaccine dose (mean titers of 17.5 for the wildtype vaccine; 24.1 for the recombinant virus). All animals remained reagents up to day 116 pv, yet showing a gradual reduction in VN titers. Animals from both vaccine groups reacted in similar VN titers to different BoHV-1 and BoHV-5 isolates, yet the magnitude of serological response of both groups was higher against BoHV-5 field isolates. Calves vaccinated with the recombinant virus did not develop antibodies to gE as verified by negative results in a gE-specific ELISA, what would allow serological differentiation from naturally infected animals. Taken together, these results indicate that inactivated antigens of BoHV-5 gE/TK recombinant virus induced an adequate serological response against BoHV-5 and BoHV-1 and thus can be used as an alternative, differential vaccine candidate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bovine herpesvirus 5 (BoHV-5) is an important pathogen of cattle in South America and efforts have been made to produce safer and more effective vaccines. In addition to afford protection, herpesvirus vaccines should allow serological differentiation of vaccinated from naturally, latently infected animals. We previously reported the construction and characterization in vitro of a double mutant BoHV-5 (BoHV-5gE/TK Δ) lacking the genes encoding thymidine kinase (tk) for attenuation, and glycoprotein E (gE) as the antigenic marker, as a vaccine candidate strain (Brum et al. 2010a). The present article reports an investigation on the attenuation and immunogenicity of this recombinant in calves. In a first experiment, 80 to 90-day-old seronegative calves (n=6) inoculated intranasally with the recombinant (titer of 10(7.5)TCID50) shed virus in low to moderate titers in nasal secretions for up to 6 days, yet did not develop any respiratory, systemic or neurological signs of infection. At day 30 post-infection (pi) all calves had BoHV-5 specific neutralizing (VN) antibodies in titers of 4 to 8 and were negative for anti-gE antibodies in a commercial ELISA test. Administration of dexamethasone (0.1mg/kg/day during 5 days) to four of these calves at day 42 pi did not result in virus shedding or increase in VN titers, indicating lack of viral reactivation. Secondly, a group of 8-month-old calves (n=9) vaccinated intramuscularly (IM) with the recombinant virus (10(7.5)TCID50/animal) did not shed virus in nasal secretions, remained healthy and developed VN titers from 2 to 8 at day 42 post-vaccination (pv), remaining negative for gE antibodies. Lastly, 21 calves (around 10 months old) maintained under field conditions were vaccinated IM with the recombinant virus (titer of 10(7.3)TCID50). All vaccinated animals developed VN titers from 2 to 16 at day 30 pv. A boost vaccination performed at day 240 pv resulted in a rapid and strong anamnestic antibody response, with VN titers reaching from 16 to 256 at day 14 post-booster. Again, serum samples remained negative for gE antibodies. Selected serum samples from vaccinated animals showed a broad VN activity against nine BoHV-5 and eight BoHV-1 field isolates. These results show that the recombinant virus is attenuated, immunogenic for calves and induces an antibody response differentiable from that induced by natural infection. Thus, the recombinant BoHV-5gE/TKΔ is an adequate candidate strain for a modified live vaccine.