35 resultados para usher syndrome, disease-related molecular biology, protein networks, protein transport, endocytosis
em Scielo Saúde Pública - SP
Resumo:
Hepatitis C virus (HCV) was first described in 1989 as the putative viral agent of non-A non-B hepatitis. It is a member of the Flaviviridae family and has been recognized as the major causative agent of chronic liver disease, including chronic active hepatitis, cirrhosis and hepatocellular carcinoma. HCV is a positive RNA virus with a genome containing approximately 9500 nucleotides. It has an open reading frame that encodes a large polyprotein of about 3000 amino acids and is characterized by extensive genetic diversity. HCV has been classified into at least 6 major genotypes with many subtypes and circulates within an infected individual as a number of closely related but distinct variants known as quasispecies. This article reviews aspects of the molecular biology of HCV and their clinical implication.
Resumo:
A population-based cross-sectional study was set up in Sabará country, Southeastern Brazil, to identify asymptomatic human visceral leishmaniasis in an urban area of low disease prevalence. Blood was collected on filter paper (n=1,604 inhabitants) and examined by indirect immunofluorescent test, enzyme-linked immunosorbent assay and immunochromatographic strip test. The prevalence rates of infection ranged from 2.4 to 5.6% depending on the test used. One year later, venous blood was collected in a subset of 226 participants (102 seropositive and 124 seronegative). The tests performed were IFAT, ELISA, rk39-ELISA, polymerase chain reaction and hybridization with Leishmania donovani complex probe. No clinical signs or symptoms of leishmaniasis were observed. Using hybridization as a reference test, the sensitivity and specificity of serology were respectively: 24.8 and 71% (ELISA); 26.3 and 76.3% (rk-39); 30.1 and 63.4% (IFAT). Due to disagreements, different criteria were tested to define the infection and hybridization should be considered in epidemiological studies.
Resumo:
The objective of the present study was to evaluate the usefulness of molecular methodologies to access human papillomavirus genome in the genital tract. Samples from 136 women aged 17 to 52 years old obtained from the Dr. Sérgio Franco Laboratories between 2000 and 2001, were analyzed by the hybrid capture assay and amplified by PCR with generic primers MY09/MY11 and specific primers for types 16, 18, 31, 33, 35, 58. Viral genome was detected in 71.3% of the samples by hybrid capture and 75% by amplification. When cytopathology was used as a reference method for screening lesions, hybrid capture (p=0) and amplification (p=0.002) presented positive association. The 3 methods showed absolute agreement when cytopathology confirmed papillomavirus infection and high grade intraepithelial lesion. Disagreements occurred for 10 cases: seven inflammatory cases positive by PCR and negative for hybrid capture and 3 low squamous intraepithelial lesions positive for hybrid capture but negative for amplification. In conclusion, hybrid capture was shown to be sensitive and specific enough for use in clinical routines. Moreover, the evaluation of viral load values obtained by this method were shown to be related to the severity of the lesion and merit further studies to analyze the possible association with risk of progression to malignancy.
Resumo:
Baculoviruses are insect viruses found mainly in Lepidoptera. The family Baculoviridae is taxonomically divided in two genera, Nucleopolyhedrovirus and Granulovirus, which differ by occlusion body morphology. NPVs (Nucleopolyhedroviruses) have polyhedrical inclusion bodies (PIBs) containing multiple viral particles, while GVs (Granuloviruses) appear to be generally single particles occluded in oval shaped occlusion bodies. During the life cycle, two different viral progenies are produced: BV (Budded Virus) and PDV (Polyhedra Derived Virus), which are essential for the infectious process and virus propagation in host cells. Baculoviruses are being used for pest control and they are especially safe due to their specificity and invertebrate-restricted host range. Baculoviruses have been used as vectors for high level protein expression ofheterologous genes from prokaryotic and eukaryotic organisms. Also, recombinant DNA techniques have allowed the production of genetically modified viral insecticides. This study is a review on the taxonomy, structure, replication and molecular biology of baculoviruses, as well as their use as bioinsecticides in Brazil.
Resumo:
The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.
Resumo:
Systematics is the study of diversity of the organisms and their relationships comprising classification, nomenclature and identification. The term classification or taxonomy means the arrangement of the organisms in groups (rate) and the nomenclature is the attribution of correct international scientific names to organisms and identification is the inclusion of unknown strains in groups derived from classification. Therefore, classification for a stable nomenclature and a perfect identification are required previously. The beginning of the new bacterial systematics era can be remembered by the introduction and application of new taxonomic concepts and techniques, from the 50s and 60s. Important progress were achieved using numerical taxonomy and molecular taxonomy. Molecular taxonomy, brought into effect after the emergence of the Molecular Biology resources, provided knowledge that comprises systematics of bacteria, in which occurs great evolutionary interest, or where is observed the necessity of eliminating any environmental interference. When you study the composition and disposition of nucleotides in certain portions of the genetic material, you study searching their genome, much less susceptible to environmental alterations than proteins, codified based on it. In the molecular taxonomy, you can research both DNA and RNA, and the main techniques that have been used in the systematics comprise the build of restriction maps, DNA-DNA hybridization, DNA-RNA hybridization, sequencing of DNA sequencing of sub-units 16S and 23S of rRNA, RAPD, RFLP, PFGE etc. Techniques such as base sequencing, though they are extremely sensible and greatly precise, are relatively onerous and impracticable to the great majority of the bacterial taxonomy laboratories. Several specialized techniques have been applied to taxonomic studies of microorganisms. In the last years, these have included preliminary electrophoretic analysis of soluble proteins and isoenzymes, and subsequently determination of deoxyribonucleic acid base composition and assessment of base sequence homology by means of DNA-RNA hybrid experiments beside others. These various techniques, as expected, have generally indicated a lack of taxonomic information in microbial systematics. There are numberless techniques and methodologies that make bacteria identification and classification study possible, part of them described here, allowing establish different degrees of subspecific and interspecific similarity through phenetic-genetic polymorphism analysis. However, was pointed out the necessity of using more than one technique for better establish similarity degrees within microorganisms. Obtaining data resulting from application of a sole technique isolatedly may not provide significant information from Bacterial Systematics viewpoint
Resumo:
Introduction Molecular biology procedures to detect, genotype and quantify hepatitis C virus (HCV) RNA in clinical samples have been extensively described. Routine commercial methods for each specific purpose (detection, quantification and genotyping) are also available, all of which are typically based on polymerase chain reaction (PCR) targeting the HCV 5′ untranslated region (5′UTR). This study was performed to develop and validate a complete serial laboratory assay that combines real-time nested reverse transcription-polymerase chain reaction (RT-PCR) and restriction fragment length polymorphism (RFLP) techniques for the complete molecular analysis of HCV (detection, genotyping and viral load) in clinical samples. Methods Published HCV sequences were compared to select specific primers, probe and restriction enzyme sites. An original real-time nested RT-PCR-RFLP assay was then developed and validated to detect, genotype and quantify HCV in plasma samples. Results The real-time nested RT-PCR data were linear and reproducible for HCV analysis in clinical samples. High correlations (> 0.97) were observed between samples with different viral loads and the corresponding read cycle (Ct - Cycle threshold), and this part of the assay had a wide dynamic range of analysis. Additionally, HCV genotypes 1, 2 and 3 were successfully distinguished using the RFLP method. Conclusions A complete serial molecular assay was developed and validated for HCV detection, quantification and genotyping.
Resumo:
The aim of the present study was to determine whether wild adult Anastrepha obliqua (Macquart, 1835) females are able to associate a compound (quinine sulphate - QS) not related to their habitual diet with a protein-enriched food. Females were first fed on diets based on brewer yeast and sucrose containing or not QS. The groups were then allowed to choose between their original diets and a diet with or without QS, depending on the previous treatment, and between a diet based on agar and a diet containing agar and QS. When the nutritional value of the diets was adequate, the females did not show any preference for the diet with or without QS. With respect to the agar diet and the agar + QS diet, females previously fed on a nutritive diet containing QS preferred the diet containing QS, indicating an association between the compound and the nutritional value of the diet. The importance of this behavioral strategy is discussed.