67 resultados para unsupervised classification
em Scielo Saúde Pública - SP
Resumo:
This study aimed to propose methods to identify croplands cultivated with winter cereals in the northern region of Rio Grande do Sul State, Brazil. Thus, temporal profiles of Normalized Difference Vegetation Index (NDVI) from MODIS sensor, from April to December of the 2000 to 2008, were analyzed. Firstly, crop masks were elaborated by subtracting the minimum NDVI image (April to May) from the maximum NDVI image (June to October). Then, an unsupervised classification of NDVI images was carried out (Isodata), considering the crop mask areas. According to the results, crop masks allowed the identification of pixels with greatest green biomass variation. This variation might be associated or not with winter cereals areas established to grain production. The unsupervised classification generated classes in which NDVI temporal profiles were associated with water bodies, pastures, winter cereals for grain production and for soil cover. Temporal NDVI profiles of the class winter cereals for grain production were in agree with crop patterns in the region (developmental stage, management standard and sowing dates). Therefore, unsupervised classification based on crop masks allows distinguishing and monitoring winter cereal crops, which were similar in terms of morphology and phenology.
Resumo:
Pressures on the Brazilian Amazon forest have been accentuated by agricultural activities practiced by families encouraged to settle in this region in the 1970s by the colonization program of the government. The aims of this study were to analyze the temporal and spatial evolution of land cover and land use (LCLU) in the lower Tapajós region, in the state of Pará. We contrast 11 watersheds that are generally representative of the colonization dynamics in the region. For this purpose, Landsat satellite images from three different years, 1986, 2001, and 2009, were analyzed with Geographic Information Systems. Individual images were subject to an unsupervised classification using the Maximum Likelihood Classification algorithm available on GRASS. The classes retained for the representation of LCLU in this study were: (1) slightly altered old-growth forest, (2) succession forest, (3) crop land and pasture, and (4) bare soil. The analysis and observation of general trends in eleven watersheds shows that LCLU is changing very rapidly. The average deforestation of old-growth forest in all the watersheds was estimated at more than 30% for the period of 1986 to 2009. The local-scale analysis of watersheds reveals the complexity of LCLU, notably in relation to large changes in the temporal and spatial evolution of watersheds. Proximity to the sprawling city of Itaituba is related to the highest rate of deforestation in two watersheds. The opening of roads such as the Transamazonian highway is associated to the second highest rate of deforestation in three watersheds.
Resumo:
Understanding the different background landscapes in which malaria transmission occurs is fundamental to understanding malaria epidemiology and to designing effective local malaria control programs. Geology, geomorphology, vegetation, climate, land use, and anopheline distribution were used as a basis for an ecological classification of the state of Roraima, Brazil, in the northern Amazon Basin, focused on the natural history of malaria and transmission. We used unsupervised maximum likelihood classification, principal components analysis, and weighted overlay with equal contribution analyses to fine-scale thematic maps that resulted in clustered regions. We used ecological niche modeling techniques to develop a fine-scale picture of malaria vector distributions in the state. Eight ecoregions were identified and malaria-related aspects are discussed based on this classification, including 5 types of dense tropical rain forest and 3 types of savannah. Ecoregions formed by dense tropical rain forest were named as montane (ecoregion I), submontane (II), plateau (III), lowland (IV), and alluvial (V). Ecoregions formed by savannah were divided into steppe (VI, campos de Roraima), savannah (VII, cerrado), and wetland (VIII, campinarana). Such ecoregional mappings are important tools in integrated malaria control programs that aim to identify specific characteristics of malaria transmission, classify transmission risk, and define priority areas and appropriate interventions. For some areas, extension of these approaches to still-finer resolutions will provide an improved picture of malaria transmission patterns.
Resumo:
This study compares the precision of three image classification methods, two of remote sensing and one of geostatistics applied to areas cultivated with citrus. The 5,296.52ha area of study is located in the city of Araraquara - central region of the state of São Paulo (SP), Brazil. The multispectral image from the CCD/CBERS-2B satellite was acquired in 2009 and processed through the Geographic Information System (GIS) SPRING. Three classification methods were used, one unsupervised (Cluster), and two supervised (Indicator Kriging/IK and Maximum Likelihood/Maxver), in addition to the screen classification taken as field checking.. Reliability of classifications was evaluated by Kappa index. In accordance with the Kappa index, the Indicator kriging method obtained the highest degree of reliability for bands 2 and 4. Moreover the Cluster method applied to band 2 (green) was the best quality classification between all the methods. Indicator Kriging was the classifier that presented the citrus total area closest to the field check estimated by -3.01%, whereas Maxver overestimated the total citrus area by 42.94%.
Resumo:
Forest cover of the Maringá municipality, located in northern Parana State, was mapped in this study. Mapping was carried out by using high-resolution HRC sensor imagery and medium resolution CCD sensor imagery from the CBERS satellite. Images were georeferenced and forest vegetation patches (TOFs - trees outside forests) were classified using two methods of digital classification: reflectance-based or the digital number of each pixel, and object-oriented. The areas of each polygon were calculated, which allowed each polygon to be segregated into size classes. Thematic maps were built from the resulting polygon size classes and summary statistics generated from each size class for each area. It was found that most forest fragments in Maringá were smaller than 500 m². There was also a difference of 58.44% in the amount of vegetation between the high-resolution imagery and medium resolution imagery due to the distinct spatial resolution of the sensors. It was concluded that high-resolution geotechnology is essential to provide reliable information on urban greens and forest cover under highly human-perturbed landscapes.
Resumo:
ABSTRACT The objective of this work was to study the distribution of values of the coefficient of variation (CV) in the experiments of papaya crop (Carica papaya L.) by proposing ranges to guide researchers in their evaluation for different characters in the field. The data used in this study were obtained by bibliographical review in Brazilian journals, dissertations and thesis. This study considered the following characters: diameter of the stalk, insertion height of the first fruit, plant height, number of fruits per plant, fruit biomass, fruit length, equatorial diameter of the fruit, pulp thickness, fruit firmness, soluble solids and internal cavity diameter, from which, value ranges were obtained for the CV values for each character, based on the methodology proposed by Garcia, Costa and by the standard classification of Pimentel-Gomes. The results obtained in this study indicated that ranges of CV values were different among various characters, presenting a large variation, which justifies the necessity of using specific evaluation range for each character. In addition, the use of classification ranges obtained from methodology of Costa is recommended.
Resumo:
INTRODUCTION: The correct identification of the underlying cause of death and its precise assignment to a code from the International Classification of Diseases are important issues to achieve accurate and universally comparable mortality statistics These factors, among other ones, led to the development of computer software programs in order to automatically identify the underlying cause of death. OBJECTIVE: This work was conceived to compare the underlying causes of death processed respectively by the Automated Classification of Medical Entities (ACME) and the "Sistema de Seleção de Causa Básica de Morte" (SCB) programs. MATERIAL AND METHOD: The comparative evaluation of the underlying causes of death processed respectively by ACME and SCB systems was performed using the input data file for the ACME system that included deaths which occurred in the State of S. Paulo from June to December 1993, totalling 129,104 records of the corresponding death certificates. The differences between underlying causes selected by ACME and SCB systems verified in the month of June, when considered as SCB errors, were used to correct and improve SCB processing logic and its decision tables. RESULTS: The processing of the underlying causes of death by the ACME and SCB systems resulted in 3,278 differences, that were analysed and ascribed to lack of answer to dialogue boxes during processing, to deaths due to human immunodeficiency virus [HIV] disease for which there was no specific provision in any of the systems, to coding and/or keying errors and to actual problems. The detailed analysis of these latter disclosed that the majority of the underlying causes of death processed by the SCB system were correct and that different interpretations were given to the mortality coding rules by each system, that some particular problems could not be explained with the available documentation and that a smaller proportion of problems were identified as SCB errors. CONCLUSION: These results, disclosing a very low and insignificant number of actual problems, guarantees the use of the version of the SCB system for the Ninth Revision of the International Classification of Diseases and assures the continuity of the work which is being undertaken for the Tenth Revision version.
Resumo:
OBJECTIVE: To develop a Charlson-like comorbidity index based on clinical conditions and weights of the original Charlson comorbidity index. METHODS: Clinical conditions and weights were adapted from the International Classification of Diseases, 10th revision and applied to a single hospital admission diagnosis. The study included 3,733 patients over 18 years of age who were admitted to a public general hospital in the city of Rio de Janeiro, southeast Brazil, between Jan 2001 and Jan 2003. The index distribution was analyzed by gender, type of admission, blood transfusion, intensive care unit admission, age and length of hospital stay. Two logistic regression models were developed to predict in-hospital mortality including: a) the aforementioned variables and the risk-adjustment index (full model); and b) the risk-adjustment index and patient's age (reduced model). RESULTS: Of all patients analyzed, 22.3% had risk scores >1, and their mortality rate was 4.5% (66.0% of them had scores >1). Except for gender and type of admission, all variables were retained in the logistic regression. The models including the developed risk index had an area under the receiver operating characteristic curve of 0.86 (full model), and 0.76 (reduced model). Each unit increase in the risk score was associated with nearly 50% increase in the odds of in-hospital death. CONCLUSIONS: The risk index developed was able to effectively discriminate the odds of in-hospital death which can be useful when limited information is available from hospital databases.
Resumo:
Studies were made on the biochemical behavior of 100 strains of P.pestis isolated in Northeastern Brazil with regard to production of nitrous acid, reduction of nitrates to nitrltes, and aciáification of glycerol. Results showed that 98 strains can be classified as "orientalis variety", while the remaining two could not be included in any of the existing "varieties".
Resumo:
We report a retrospective histopathological classification carried out under laboratory conditions by the method of Ridley & Jopling of 1,108 skin biopsies from patients clinically suspected of having leprosy from Bahia, Northeast Brazil.
Resumo:
INTRODUCTION: This study aimed to evaluate spasticity in human T-lymphotropic virus type 1-associated myelopathy/tropical spastic paraparesis (HAM/TSP) patients before and after physical therapy using the International Classification of Functioning, Disability and Health (ICF). METHODS: Nine subjects underwent physical therapy. Spasticity was evaluated using the Modified Ashworth Scale. The obtained scores were converted into ICF body functions scores. RESULTS: The majority of subjects had a high degree of spasticity in the quadriceps muscles. According to the ICF codes, the spasticity decreased after 20 sessions of physical therapy. CONCLUSIONS: The ICF was effective in evaluating spasticity in HAM/TSP patients.
Resumo:
Abstract: INTRODUCTION: The dengue classification proposed by the World Health Organization (WHO) in 2009 is considered more sensitive than the classification proposed by the WHO in 1997. However, no study has assessed the ability of the WHO 2009 classification to identify dengue deaths among autopsied individuals suspected of having dengue. In the present study, we evaluated the ability of the WHO 2009 classification to identify dengue deaths among autopsied individuals suspected of having dengue in Northeast Brazil, where the disease is endemic. METHODS: This retrospective study included 121 autopsied individuals suspected of having dengue in Northeast Brazil during the epidemics of 2011 and 2012. All the autopsied individuals included in this study were confirmed to have dengue based on the findings of laboratory examinations. RESULTS: The median age of the autopsied individuals was 34 years (range, 1 month to 93 years), and 54.5% of the individuals were males. According to the WHO 1997 classification, 9.1% (11/121) of the cases were classified as dengue hemorrhagic fever (DHF) and 3.3% (4/121) as dengue shock syndrome. The remaining 87.6% (106/121) of the cases were classified as dengue with complications. According to the 2009 classification, 100% (121/121) of the cases were classified as severe dengue. The absence of plasma leakage (58.5%) and platelet counts <100,000/mm3 (47.2%) were the most frequent reasons for the inability to classify cases as DHF. CONCLUSIONS: The WHO 2009 classification is more sensitive than the WHO 1997 classification for identifying dengue deaths among autopsied individuals suspected of having dengue.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.