108 resultados para tree transpiration
em Scielo Saúde Pública - SP
Resumo:
A study was carried out at Embrapa Semi-Árido, Petrolina-PE, Brazil, aiming to understand the gas exchange process of the umbu tree (Spondias tuberosa Arr. Cam.) in the dry and rainy seasons. Stomatal conductance, transpiration, photosynthesis and internal CO2 concentration were obtained with a portable infrared gas analyzer (IRGA). During the dry season the umbu tree showed a much lower stomatal conductance early in the morning, as soon as the vapor pressure deficit increased, apparently affecting CO2 assimilation more than transpiration. The highest values were detected around 6:00 am but decreased to the lowest points between 10:00 am and 2:00 pm. During the rainy season, however, stomatal conductance, transpiration and photosynthesis were significantly higher, reaching the highest values between 8:00 and 10:00 am and the lowest around 2:00 pm. It was also observed at 4:00 pm, mainly during the rainy season, an increase on these variables indicating that the umbu tree exhibits a two-picked daily course of gas exchange.
Resumo:
This study evaluated the photosynthetic responses of seven tropical trees of different successional groups under contrasting irradiance conditions, taking into account changes in gas exchange and chlorophyll a fluorescence. Although early successional species have shown higher values of CO2 assimilation (A) and transpiration (E), there was not a defined pattern of the daily gas exchange responses to high irradiance (FSL) among evaluated species. Cariniana legalis (Mart.) Kuntze (late secondary) and Astronium graveolens Jacq. (early secondary) exhibited larger reductions in daily-integrated CO2 assimilation (DIA) when transferred from medium light (ML) to FSL. On the other hand, the pioneer species Guazuma ulmifolia Lam. had significant DIA increase when exposed to FSL. The pioneers Croton spp. trended to show a DIA decrease around 19%, while Cytharexyllum myrianthum Cham. (pioneer) and Rhamnidium elaeocarpum Reiss. (early secondary) trended to increase DIA when transferred to FSL. Under this condition, all species showed dynamic photoinhibition, except for C. legalis that presented chronic photoinhibition of photosynthesis. Considering daily photosynthetic processes, our results supported the hypothesis of more flexible responses of early successional species (pioneer and early secondary species). The principal component analysis indicated that the photochemical parameters effective quantum efficiency of photosystem II and apparent electron transport rate were more suitable to separate the successional groups under ML condition, whereas A and E play a major role to this task under FSL condition.
Resumo:
Water relations of the tree species Myrsine umbellata Mart. ex A. DC., Dodonaea viscosa Jacq. and Erythroxylum argentinum O. E. Schulz, growing on a rock outcrop in the "Parque Estadual de Itapuã" (RS), were studied. Environmental (precipitation, temperature, soil water) and plant (water potential, vapor pressure deficit, stomatal conductance, transpiration, leaf specific hydraulic conductance, osmotic potential and cell wall elasticity) parameters were collected in five periods and pooled into two sets of data: wet and dry periods. Myrsine umbellata showed great stability of the plant parameters, including the maintenance of high pre-dawn (psiwpd) and mid-day (psiwmd) water potentials in the dry period (-0.48 and -1.12 MPa, respectively), suggesting the presence of a deep root system. Dodonaea viscosa and E. argentinum reached lower psiwpd (-1.41 and -1.97 MPa, respectively) and a greater degree of stomatal closure in the dry period, suggesting a shallower root system. Differential exposure to soil drought was also corroborated by differential drought effects on the whole-plant leaf specific hydraulic conductance (Gt). Correlation analysis pointed to weak correlations between psiwpd and g s. Erythroxylum argentinum was the only species to show osmotic adjustment in response to drought. It is suggested that M. umbellata has low tolerance to water deficits, adopting an avoidance behavior. The much lower values of psiw reached by D. viscosa and E. argentinum suggest a greater tolerance to drought by these species.
Resumo:
Polyembryonic seeds are characterized by the development of over one embryo in the same seed, which can be zygotic and nucellar. The objective of this work was to identify the genetic origin, whether zygotic or nucellar, of seedlings of polyembryonic seeds of 'Ubá' mango tree using ISSR markers, and relating them with the vigor of the seedlings. Thus, mangos were harvested in Visconde do Rio Branco (accession 102) and Ubá (accessions 112, 138, 152 and 159), whose seeds were germinated in plastic trays filled with washed sand. Fifty days after sowing, seedlings from five seeds of each one of the accessions 102, 112, 138, 159 and from 10 seeds of the accession 152, were analyzed. These sseedlings were characterized and evaluated for plant height, stem circumference and mass of fresh aerial part and the most vigorous seedling was the one displaying at least two of these traits higher than the other seedlings from seed. Leaves were collected for genomic DNA extraction, which was amplified using seven ISSR primers previously selected based on the amplification profile and considering the number and resolution of fragments. Zygotic seedlings were found in 18 seeds, which were the most vigorous in six seeds. The results evidenced the existence of genetic variability in orchards using seedlings grown from seeds, because the farmer usually uses the most vigorous ones, assuming that this is of nucellar origin. These results also indicate that the most vigorous seedling are not always nucellar, inasmuch as of 20% of the total seeds evaluated, the zygotic seedling was the most vigorous.
Resumo:
Light and soil water availability may limit carbon uptake of trees in tropical rainforests. The objective of this work was to determine how photosynthetic traits of juvenile trees respond to variations in rainfall seasonality, leaf nutrient content, and opening of the forest canopy. The correlation between leaf nutrient content and annual growth rate of saplings was also assessed. In a terra firme rainforest of the central Amazon, leaf nutrient content and gas exchange parameters were measured in five sapling tree species in the dry and rainy season of 2008. Sapling growth was measured in 2008 and 2009. Rainfall seasonality led to variations in soil water content, but it did not affect leaf gas exchange parameters. Subtle changes in the canopy opening affected CO2 saturated photosynthesis (A pot, p = 0.04). Although A pot was affected by leaf nutrient content (as follows: P > Mg > Ca > N > K), the relative growth rate of saplings correlated solely with leaf P content (r = 0.52, p = 0.003). At present, reduction in soil water content during the dry season does not seem to be strong enough to cause any effect on photosynthesis of saplings in central Amazonia. This study shows that leaf P content is positively correlated with sapling growth in the central Amazon. Therefore, the positive effect of atmospheric CO2 fertilization on long-term tree growth will depend on the ability of trees to absorb additional amount of P
Resumo:
The C. cerifera palm tree (carnaúba) is widely distributed in the Northeastem Brazil, including the State of Piauí. This investigation revealed that R. nasutus is the ortly triatomine species captured on that palm tree, in five different localities. 78% of palm trees were infested with triatomines, and 4.0% were infected with flagellates morphologically and biologically indistinguishable from Trypanosoma cruzi. Birds, rodents and marsupials were found as major blood meai sources for R. nasutus.
Resumo:
The authors report a massive attack by Pseudomyrmex ants on a human who touched a Triplaria - novice tree (Triplaris spp). The ants naturally live in these trees and their stings cause intense pain and discrete to moderate local inflammation. The problem is common in some Brazilian regions and can be prevented by identifying the trees.
Resumo:
Evapotranspiration rates for a eight month old tropical pasture were estimated using the Penman-Monteith equation. Transpiration rates for several woody secondary successional species and stump sprous in the pasture and conucos (farm sites) were measured using the tritiated water technique.The stuty area was located near the village of San Carlos de Rio Negro (1° 56' N, 67° 03' W) in southern Venezuela, near the confluence of the Casiquiare and the Rio Guania wich forms the Rio Negro. The terrain was gently rolling with the areas between the small ridges supporting Amazon caatina forests on spodosols, and higher never flooded areas (tierra firma) supporting a mixed species forest.Results indicated that for a one month period, ET loss (0.46 cm/day) from the pasture, including soil and root mat evaporation, was about 0.43 cm/day less than estimated from the adjacent undisturbed forest (0.89 cm/day). Pan A evaporation for the same time period was 0.64 cm/day. Transpiration rates for seed established species were significantly less (0.38 cm/day) than for stump sprouts (1.09 cm/day) of the primary forest in the pasture.
Resumo:
A large-scale inventory of trees > 10cm DBH was conducted in the upland "terra firme" rain forest of the Distrito Agropecuário da SUFRAMA (Manaus Free Zone Authority Agricultural District) approximately 65Km north of the city of Manaus (AM), Srasil. Thegeneral appearance and structure of the forest is described together with local topography and soil texture. Thepreliminary results of the Inventory provide a minimum estimate of 698 tree species in 53 families in the 40Km radius sampled, including 17 undescribed species. Themost numerically abundant families, Lecythidaceae, Leguminosae, 5apotaceae and Burseraceae as also among the most species rich families. One aspect of this diverse assemblage is the proliferation of species within certain genera, Including 26 genera In 17 families with 6 or more species or morphospecies. Most species have very low abundances of less than 1 tree per hectare. While more abundant species do exist at densities ranging up to a mean of 12 trees per ha, many have clumped distributions leading to great variation in local species abundance. The degree of similarity between hectare samples based int the Coefficient of Community similarity Index varies widely over different sample hectares for five ecologically different families. Soil texture apparently plays a significant role In determining species composition in the different one hectare plots examined while results for other variable were less consistent. Greater differences in similarity indices are found for comparisons with a one hectare sample within the same formation approximately 40Km to the south. It is concluded that homogeneity of tree community composition within this single large and diverse yet continuous upland forest formation can not be assumed.
Resumo:
Two canopies of a widely distributed Amazonian tree species, Goupia glabra Aubl. (Celastraceae, height 38 and 45m) were fogged several times with 1% natural pyrethrum during the rainy and dry seasons (1991-1994) in the Adolpho Ducke Forest Reserve near Manaus/Brazil. Between 50 and 158 ind./m2 of arthropods were obtained per tree and fogging event. Hymenoptera, mostly Formicidae, and Diptcra dominated. A total of 95 ant species occurred on a single tree. Most ants were permanently foraging in the canopy and their recolonization after fogging seems to follow stochastic pathways. Data indicated an interaction between - 1) predating Formicidae and gall building Cecidomyiidae and - 2) Cecidomyiidae and the parasitic Hymenoptera.
Resumo:
The aim of this study was to test the hypothesis that the monodominant non-pioneer Peltogyne gracilipes, typically does not suffer density-dependent herbivory (Janzen-Connell model). Two components of intraspecific variation in leaf herbivory were measured: 1) the variation between individuals in the population at the same time and 2) the temporal variation in rates of damage to each individual. The study was carried out on Maracá Island, Roraima, Brazil in three plots (50 m χ 50 m) in each of three forest types: Peltogyne-rich forest (PRF), Peltogyne-poor forest (PPF), and forest without Peltogyne (FWP). Two other non-pioneer species (Ecclinusa guianensis and Pradosia surinamensis) were chosen for comparison because they were fairly abundant and their seedlings could be readily identified. The values of leaf area removed by herbivores of trees and seedlings of the three study species were in the range reported for other tropical tree species (2-16%, standing damage). There were no differences within species between forests. However, there was a significant difference among species but this was not correlated with seedling density. Peltogyne seedlings showed no evidence of density-dependent herbivory as predicted by the Janzen-Connell model despite the fact that adult trees were observed to suffer a mass defoliation in April 1992. This result suggests that Peltogyne may be dominant partly due to escape from herbivory in the early stages of its life although it may suffer occasional mass defoliation as an adult.
Resumo:
In the Brazilian Amazon, large areas of abandoned lands may revert to secondary forest. In the process, pioneer tree species have an important role to restore productivity in old fields and improve environmental conditions. To determine potential photosynthesis (Apot), stomatal conductance (g), transpiration (E), and leaf micronutrient concentrations in Ochroma pyramidale (Cav. ex Lam.) Urban a study was carried out in the Brazilian Amazon (01o 51' S; 60o 04' W). Photosynthetic parameters were measured at increasing [CO2], saturating light intensity (1 mmol (photons) m-2 s-1), and ambient temperature. The rate of electron-transport (J), Apot,and water-use efficiency (WUE) increased consistently at increasing internal CO2 concentration (Ci). Conversely, increasing [CO2] decreased gs, E, and photorespiration (Pr). At the CO2-saturated region of the CO2 response curve (1.1 mmol (CO2) mol-1(air), J was 120 μmol (e-) m-2s-1 and Apot reached up to 24 μmol (CO2) m-2s-1. Likewise, at saturating C1 g and E were 30 and 1.4 mmol (H2O) m-2s-1, respectively, and P 2 r about 1.5 μmol (CO2) m-2s-1. Foliar nutrients were 185, 134, 50, and 10 μmol (element) m-2 (leaf area) for Fe, Mn, Zn, and Cu, respectively. It was concluded that [CO ] probably limits light saturated photosynthesis in this site. Furthermore, from a nutritional point of view, the low Fe to Cu ratio (15:1) may reflect nutritional imbalance in O. pyramidale at this site.
Resumo:
This study investigates patterns of forest structure and tree species diversity in an anthropogenic palm grove and undisturbed areas at the seasonally-dry Pinkaití research station, in the Kayapó Indigenous Area. This site, managed by the Conservation International do Brasil, is the most southeastern site floristically surveyed in the Amazon until now. The secondary and a nearby undisturbed forest were sampled in a group of 52 floristic plots of 0.0625-ha (25x25-m) where all trees with DBH > 10 cm were measured and identified. The analyses were complemented with other two floristic plots of 1-ha (10x1000-m). The present study has shown that the Pinkaití, like other seasonally-dry forests, have great heterogeneity in forest structure and composition, associated with biotic characteristics of the most important tree species, natural disturbance and history of land-use. The palm grove, moderately dominated by the arborescent palm Attalea maripa (Aubl.) Mart., presented high tree species diversity and was floristically similar to undisturbed forests at the study site. It is discussed the importance of large arborescent palms for the seasonally-dry Amazon forests regeneration.
Resumo:
A multilocus mixed-mating model was used to evaluate the mating system of a population of Couratari multiflora, an emergent tree species found in low densities (1 individual/10 ha) in lowland forests of central Amazonia. We surveyed and observed phenologically 41 trees in an area of 400 ha. From these, only four mother trees were analyzed here because few of them set fruits, which also suffered high predation. No difference was observed between the population multilocus outcrossing rate (t mp = 0.953 ± 0.040) and the average single locus rate (t sp = 0.968 ± 0.132). The four mother trees were highly outcrossed (t m ~ 1). Two out of five loci showed departures from the Hardy-Weinberg Equilibrium (HWE) expectations, and the same results occurred with the mixed-mating model. Besides the low number of trees analyzed, the proportion of loci in HWE suggests random mating in the population. However, the pollen pool was heterogeneous among families, probably due to both the small sample number and the flowering of trees at different times of the flowering season. Reproductive phenology of the population and the results presented here suggest, at least for part of the population, a long-distance pollen movement, around 1,000 m.
Resumo:
Stomata are turgor-operated valves that control water loss and CO2 uptake during photosynthesis, and thereby water relation and plant biomass accumulation is closely related to stomatal functioning. The aims of this work were to document how stomata are distributed on the leaf surface and to determine if there is any significant variation in stomatal characteristics among Amazonian tree species, and finally to study the relationship between stomatal density (S D) and tree height. Thirty five trees (>17 m tall) of different species were selected. Stomatal type, density (S D), size (S S) and stomatal distribution on the leaf surface were determined using nail polish imprints taken from both leaf surfaces. Irrespective of tree species, stomata were located only on the abaxial surface (hypostomaty), with large variation in both S D and S S among species. S D ranged from 110 mm-2 in Neea altissima to 846 mm-2 in Qualea acuminata. However, in most species S D ranges between 271 and 543 mm-2, with a negative relationship between S D and S S. We also found a positive relationship between S D and tree height (r² = 0.14, p < 0.01), but no correlation was found between S D and leaf thickness. The most common stomatal type was anomocytic (37%), followed by paracytic (26%) and anisocytic (11%). We conclude that in Amazonian tree species, stomatal distribution on the leaf surface is a response most likely dependent on the genetic background of every species, rather than a reaction to environmental changes, and that somehow S D is influenced by environmental factors dependent on tree height.