14 resultados para transporters

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of ATP-binding cassette (ABC) transporters in the efflux of the insecticide, temephos, was assessed in the larvae of Aedes aegypti. Bioassays were conducted using mosquito populations that were either susceptible or resistant to temephos by exposure to insecticide alone or in combination with sublethal doses of the ABC transporter inhibitor, verapamil (30, 35 and 40 μM). The best result in the series was obtained with the addition of verapamil (40 μM), which led to a 2x increase in the toxicity of temephos, suggesting that ABC transporters may be partially involved in conferring resistance to the populations evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSES: To determine the basic expression of ABC transporters in an epithelial ovarian cancer cell line, and to investigate whether low concentrations of acetaminophen and ibuprofen inhibited the growth of this cell line in vitro. METHODS: TOV-21 G cells were exposed to different concentrations of acetaminophen (1.5 to 15 μg/mL) and ibuprofen (2.0 to 20 μg/mL) for 24 to 48 hours. The cellular growth was assessed using a cell viability assay. Cellular morphology was determined by fluorescence microscopy. The gene expression profile of ABC transporters was determined by assessing a panel including 42 genes of the ABC transporter superfamily. RESULTS: We observed a significant decrease in TOV-21 G cell growth after exposure to 15 μg/mL of acetaminophen for 24 (p=0.02) and 48 hours (p=0.01), or to 20 μg/mL of ibuprofen for 48 hours (p=0.04). Assessing the morphology of TOV-21 G cells did not reveal evidence of extensive apoptosis. TOV-21 G cells had a reduced expression of the genes ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 within the ABC transporter superfamily. CONCLUSIONS: This study provides in vitro evidence of inhibitory effects of growth in therapeutic concentrations of acetaminophen and ibuprofen on TOV-21 G cells. Additionally, TOV-21 G cells presented a reduced expression of the ABCA1, ABCC3, ABCC4, ABCD3, ABCD4 and ABCE1 transporters.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glycosylation of glycoconjugates and the biosynthesis of polysaccharides depend on nucleotide-sugars which are the substrates for glycosyltransferases. A large proportion of these enzymes are located within the lumen of the Golgi apparatus as well as the endoplasmic reticulum, while many of the nucleotide-sugars are synthesized in the cytosol. Thus, nucleotide-sugars are translocated from the cytosol to the lumen of the Golgi apparatus and endoplasmic reticulum by multiple spanning domain proteins known as nucleotide-sugar transporters (NSTs). These proteins were first identified biochemically and some of them were cloned by complementation of mutants. Genome and expressed sequence tag sequencing allowed the identification of a number of sequences that may encode for NSTs in different organisms. The functional characterization of some of these genes has shown that some of them can be highly specific in their substrate specificity while others can utilize up to three different nucleotide-sugars containing the same nucleotide. Mutations in genes encoding for NSTs can lead to changes in development in Drosophila melanogaster or Caenorhabditis elegans, as well as alterations in the infectivity of Leishmania donovani. In humans, the mutation of a GDP-fucose transporter is responsible for an impaired immune response as well as retarded growth. These results suggest that, even though there appear to be a fair number of genes encoding for NSTs, they are not functionally redundant and seem to play specific roles in glycosylation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ucides cordatus (Linnaeus, 1763) is a hypo-hyper-regulating mangrove crab possessing gills for respiratory and osmoregulatory processes, separated in anterior and posterior sections. They also have hepatopancreas, which is responsible for digestion and absorption of nutrients and detoxification of toxic metals. Each of these organs has specific cells that are important for in vitro studies in cell biology, ion and toxic metals transport. In order to study and characterize cells from gills and hepatopancreas, both were separated using a Sucrose Gradient (SG) from 10 to 40% and cells in each gradient were characterized using the vital mitochondrial dye DASPEI (2-(4-dimethylaminostyryl)-N- ethylpyridinium iodide) and Trichrome Mallory's stain. Both in 20 and 40% SG for gill cells and 30% SG for hepatopancreatic cells, a greater number of cells were colored with DASPEI, indicating a larger number of mitochondria in these cells. It is concluded that the gill cells present in 20% and 40% SG are Thin cells, responsible for respiratory processes and Ionocytes responsible for ion transport, respectively. For hepatopancreatic cells, the 30% SG is composed of Fibrillar cells that possess larger number of membrane ion and nutrient transporters. Moreover, the transport of toxic metal cadmium (Cd) by isolated hepatopancreatic cells was performed as a way of following cell physiological integrity after cell separation and to study differences in transport among the cells. All hepatopancreatic cells were able to transport Cd. These findings are the first step for further work on isolated cells of these important exchange epithelia of crabs, using a simple separation method and to further develop successful in vitro cell culture in crabs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The intraerythrocytic malarial parasite is involved in an extremely intensive anabolic activity while it resides in its metabolically quiescent host cell. The necessary fast uptake of nutrients and the discharge of waste product, are guaranteed by parasite-induced alterations of the constitutive transporters of the host cell and the production of new parallel pathways. The membrane of the host cell thus becomes permeable to phospholipids, purine bases and nucleosides, small non-electrolytes, anions and cations. When the new pathways are quantitatively unimportant, classical inhibitors of native transporters can be used to inhibit parasite growth. Several compounds were found to effectively inhibit the new pathways and consequently, parasite growth. The pathways have also been used to introduce cytotoxic agents. The parasitophorous membrane consists of channels which are highly permeable to small solutes and display no ion selectivity. Transport of some cations and anions across the parasite membrane is rapid and insensitive to classical inhibitors, and in some cases it is mediated by specific antiporters which respond to their respective inhibitors. Macromolecules have been shown to reach the parasitophorous space through a duct contiguous with the host cell membrane, and subsequently to be endocytosed at the parasite membrane. The simultaneous presence of the parasitophorous membrane channels and the duct, however, is incompatible with experimental evidences. No specific inhibitors were found as yet that would efficiently inhibit transport through the channels or the duct.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During their complex life cycle schistosomes alternate between the use of stored glycogen and reliance on host glucose to provide for their energy needs. In addition, there is dramatic variation between the relative contribution of aerobic versus anaerobic glucose metabolism during development. We have cloned a set of representative cDNAs that encode proteins involved in glucose uptake, glycolysis, Kreb's cycle and oxidative phosphorylation. The different cDNAs were used as probes to examine the expression of glucose metabolism genes during the schistosome life cycle. Steady state mRNA levels from whole cercariae, isolated cercarial tails, schistosomula and adult worms were analysed on Northern blots and dot blots which were quantified using storage phosphor technology. These studies reveal: (1) Transcripts encoding glycogen metabolic enzymes are expressed to much higher levels in cercarial tails than whole cercariae or schistosomula while the opposite pattern is found for glucose transporters and hexokinase transcripts; (2) Schistosomula contain low levels of transcripts encoding respiratory enzymes but regain the capacity for aerobic glucose metabolism as they mature to adulthood; (3) Male and female adults contain similar levels of the different transcripts involved in glucose metabolism.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The tegument surface of the adult schistosome, bounded by a normal plasma membrane overlain by a secreted membranocalyx, holds the key to understanding how schistosomes evade host immune responses. Recent advances in mass spectrometry (MS), and the sequencing of the Schistosoma mansoni transcriptome/genome, have facilitated schistosome proteomics. We detached the tegument from the worm body and enriched its surface membranes by differential extraction, before subjecting the preparation to liquid chromatography-based proteomics to identify its constituents. The most exposed proteins on live worms were labelled with impearmeant biotinylation reagents, and we also developed methods to isolate the membranocalyx for analysis. We identified transporters for sugars, amino acids, inorganic ions and water, which confirm the importance of the tegument plasma membrane in nutrient acquisition and solute balance. Enzymes, including phosphohydrolases, esterases and carbonic anhydrase were located with their catalytic domains external to the plasma membrane, while five tetraspanins, annexin and dysferlin were implicated in membrane architecture. In contrast, few parasite proteins could be assigned to the membranocalyx but mouse immune response proteins, including three immunoglobulins and two complement factors, were detected, plus host membrane proteins such as CD44, integrin and a complement regulatory protein, testifying to the acquisitive properties of the secreted bilayer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benznidazole (BZ) is one of the two drugs used for Chagas disease treatment. Nevertheless therapeutic failures of BZ have been reported, which were mostly attributed to variable drug susceptibility among Trypanosoma cruzistrains. ATP-binding cassette (ABC) transporters are involved in a variety of translocation processes and some members have been implicated in drug resistance. Here we report the characterisation of the first T. cruzi ABCG transporter gene, named TcABCG1, which is over-expressed in parasite strains naturally resistant to BZ. Comparison ofTcABCG1 gene sequence of two TcI BZ-resistant strains with CL Brener BZ-susceptible strain showed several single nucleotide polymorphisms, which determined 11 amino acid changes. CL Brener transfected with TcI transporter genes showed 40-47% increased resistance to BZ, whereas no statistical significant increment in drug resistance was observed when CL Brener was transfected with the homologous gene. Only in the parasites transfected with TcI genes there was 2-2.6-fold increased abundance of TcABCG1transporter protein. The analysis in wild type strains also suggests that the level of TcABCG1transporter is related to BZ natural resistance. The characteristics of untranslated regions of TcABCG1genes of BZ-susceptible and resistant strains were investigated by computational tools.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Resistance to chemotherapy in cancer cells is mainly mediated by overexpression of P-glycoprotein (Pgp), a plasma membrane ATP-binding cassette (ABC) transporter which extrudes cytotoxic drugs at the expense of ATP hydrolysis. Pgp consists of two homologous halves each containing a transmembrane domain and a cytosolic nucleotide-binding domain (NBD) which contains two consensus Walker motifs, A and B, involved in ATP binding and hydrolysis. The protein also contains an S signature characteristic of ABC transporters. The molecular mechanism of Pgp-mediated drug transport is not known. Since the transporter has an extraordinarily broad substrate specificity, its cellular function has been described as a "hydrophobic vacuum cleaner". The limited knowledge about the mechanism of Pgp, partly due to the lack of a high-resolution structure, is well reflected in the failure to efficiently inhibit its activity in cancer cells and thus to reverse multidrug resistance (MDR). In contrast to the difficulties encountered when studying the full-length Pgp, the recombinant NBDs can be obtained in large amounts as soluble proteins. The biochemical and biophysical characterization of recombinant NBDs is shown here to provide a suitable alternative route to establish structure-function relationships. NBDs were shown to bind ATP and analogues as well as potent modulators of MDR, such as hydrophobic steroids, at a region close to the ATP site. Interestingly, flavonoids also bind to NBDs with high affinity. Their binding site partly overlaps both the ATP-binding site and the steroid-interacting region. Therefore flavonoids constitute a new promising class of bifunctional modulators of Pgp.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Relaxation in the mammalian ventricle is initiated by Ca2+ removal from the cytosol, which is performed by three main transport systems: sarcoplasmic reticulum Ca2+-ATPase (SR-A), Na+-Ca2+ exchanger (NCX) and the so-called slow mechanisms (sarcolemmal Ca2+-ATPase and mitochondrial Ca2+ uptake). To estimate the relative contribution of each system to twitch relaxation, SR Ca2+ accumulation must be selectively inhibited, usually by the application of high caffeine concentrations. However, caffeine has been reported to often cause changes in membrane potential due to NCX-generated inward current, which compromises the reliability of its use. In the present study, we estimated integrated Ca2+ fluxes carried by SR-A, NCX and slow mechanisms during twitch relaxation, and compared the results when using caffeine application (Cf-NT) and an electrically evoked twitch after inhibition of SR-A with thapsigargin (TG-TW). Ca2+ transients were measured in 20 isolated adult rat ventricular myocytes with indo-1. For transients in which one or more transporters were inhibited, Ca2+ fluxes were estimated from the measured free Ca2+ concentration and myocardial Ca2+ buffering characteristics. NCX-mediated integrated Ca2+ flux was significantly higher with TG-TW than with Cf-NT (12 vs 7 µM), whereas SR-dependent flux was lower with TG-TW (77 vs 81 µM). The relative participations of NCX (12.5 vs 8% with TG-TW and Cf-NT, respectively) and SR-A (85 vs 89.5% with TG-TW and Cf-NT, respectively) in total relaxation-associated Ca2+ flux were also significantly different. We thus propose TG-TW as a reliable alternative to estimate NCX contribution to twitch relaxation in this kind of analysis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We report novel features of the genome sequence of Leptospira interrogans serovar Copenhageni, a highly invasive spirochete. Leptospira species colonize a significant proportion of rodent populations worldwide and produce life-threatening infections in mammals. Genomic sequence analysis reveals the presence of a competent transport system with 13 families of genes encoding for major transporters including a three-member component efflux system compatible with the long-term survival of this organism. The leptospiral genome contains a broad array of genes encoding regulatory system, signal transduction and methyl-accepting chemotaxis proteins, reflecting the organism's ability to respond to diverse environmental stimuli. The identification of a complete set of genes encoding the enzymes for the cobalamin biosynthetic pathway and the novel coding genes related to lipopolysaccharide biosynthesis should bring new light to the study of Leptospira physiology. Genes related to toxins, lipoproteins and several surface-exposed proteins may facilitate a better understanding of the Leptospira pathogenesis and may serve as potential candidates for vaccine.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During the process of endochondral bone formation, chondrocytes and osteoblasts mineralize their extracellular matrix by promoting the formation of hydroxyapatite (HA) seed crystals in the sheltered interior of membrane-limited matrix vesicles (MVs). Ion transporters control the availability of phosphate and calcium needed for HA deposition. The lipidic microenvironment in which MV-associated enzymes and transporters function plays a crucial physiological role and must be taken into account when attempting to elucidate their interplay during the initiation of biomineralization. In this short mini-review, we discuss the potential use of proteoliposome systems as chondrocyte- and osteoblast-derived MVs biomimetics, as a means of reconstituting a phospholipid microenvironment in a manner that recapitulates the native functional MV microenvironment. Such a system can be used to elucidate the interplay of MV enzymes during catalysis of biomineralization substrates and in modulating in vitro calcification. As such, the enzymatic defects associated with disease-causing mutations in MV enzymes could be studied in an artificial vesicular environment that better mimics their in vivo biological milieu. These artificial systems could also be used for the screening of small molecule compounds able to modulate the activity of MV enzymes for potential therapeutic uses. Such a nanovesicular system could also prove useful for the repair/treatment of craniofacial and other skeletal defects and to facilitate the mineralization of titanium-based tooth implants.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Maternal dietary protein restriction during pregnancy is associated with low fetal birth weight and leads to renal morphological and physiological changes. Different mechanisms can contribute to this phenotype: exposure to fetal glucocorticoid, alterations in the components of the renin-angiotensin system, apoptosis, and DNA methylation. A low-protein diet during gestation decreases the activity of placental 11ß-hydroxysteroid dehydrogenase, exposing the fetus to glucocorticoids and resetting the hypothalamic-pituitary-adrenal axis in the offspring. The abnormal function/expression of type 1 (AT1R) or type 2 (AT2R) AngII receptors during any period of life may be the consequence or cause of renal adaptation. AT1R is up-regulated, compared with control, on the first day after birth of offspring born to low-protein diet mothers, but this protein appears to be down-regulated by 12 days of age and thereafter. In these offspring, AT2R expression differs from control at 1 day of age, but is also down-regulated thereafter, with low nephron numbers at all ages: from the fetal period, at the end of nephron formation, and during adulthood. However, during adulthood, the glomerular filtration rate is not altered, due to glomerulus and podocyte hypertrophy. Kidney tubule transporters are regulated by physiological mechanisms; Na+/K+-ATPase is inhibited by AngII and, in this model, the down-regulated AngII receptors fail to inhibit Na+/K+-ATPase, leading to increased Na+ reabsorption, contributing to the hypertensive status. We also considered the modulation of pro-apoptotic and anti-apoptotic factors during nephrogenesis, since organogenesis depends upon a tight balance between proliferation, differentiation and cell death.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glucose enters eukaryotic cells via two types of membrane-associated carrier proteins, the Na+/glucose cotransporters (SGLT) and the facilitative glucose transporters (GLUT). The SGLT family consists of six members. Among them, the SGLT1 and SGLT2 proteins, encoded by the solute carrier genes SLC5A1 and SLC5A2, respectively, are believed to be the most important ones and have been extensively explored in studies focusing on glucose fluxes under both physiological and pathological conditions. This review considers the regulation of the expression of the SGLT promoted by protein kinases and transcription factors, as well as the alterations determined by diets of different compositions and by pathologies such as diabetes. It also considers congenital defects of sugar metabolism caused by aberrant expression of the SGLT1 in glucose-galactose malabsorption and the SGLT2 in familial renal glycosuria. Finally, it covers some pharmacological compounds that are being currently studied focusing on the interest of controlling glycemia by antagonizing SGLT in renal and intestinal tissues.