132 resultados para textured soybean protein
em Scielo Saúde Pública - SP
Resumo:
The objective of this work was to develop suitable and economic diets for mass rearing Mediterranean fruit fly, Ceratitis capitata (Diptera: Tephritidae). Diets containing sugar beet bagase, wheat bran, brewer yeast, and others with wheat bran and palletized soybean protein from Brazil were tested. Diets based on soybean protein have shown promising results regarding pupal recovery, pupal weight and adult emergence. Soybean bagase in the form of pellets with 60% of protein can be a very important substitute for other expensive sources of protein.
Resumo:
The objective of this study was to assess the potential utilization of ostrich meat trimming in hamburger preparation, as well as its physicochemical and sensory characterization. Using ostrich meat trimmings from the legs and neck, four different formulations were prepared with varied amounts of bacon and textured soybean protein. Physical analysis of yield, shrinkage percentage, and water retention capacity and chemical analysis of proximate composition, cholesterol levels, and calories were performed. The formulations underwent sensory analysis by 52 potential ostrich meat consumers, who evaluated tenderness, juiciness, flavor, and purchase intent. The formulations containing textured soybean protein showed the highest yield, lowest shrinkage percentage, and highest water retention capacity. Lipid content varied from 0.58 to 4.99%; protein from 17.08 to 21.37%; ash from 3.00 to 3.62%; moisture from 73.87 to 76.27%; cholesterol from 22.54 to 32.11 mg.100 g-1; and calorie from 87.22 to 163.42 kcal.100 g-1. All formulations showed low cholesterol and calorie levels, even that containing 10% bacon and 3.5% textured soybean protein, which achieved the best scores and acceptance by the panelists.
Resumo:
We evaluated the protein quality of organic and transgenic soy fed to rats throughout life. Thirty female Wistar rats were divided into three groups (N = 10): organic soy group (OSG) receiving organic soy-based diet, genetically modified soy group (GMSG) receiving transgenic soy-based diet, and a control group (CG) receiving casein-based diet. All animals received water and isocaloric diet (10% protein), ad libitum for 291 days. After this, the weight of GMSG animals (290.9 ± 9.1 g) was significantly lower (P <= 0.04) than CG (323.2 ± 7.9 g). The weight of OSG (302.2 ± 8.7 g) was between that of the GMSG and the CG. Protein intake was similar for OSG (308.4 ± 6.8 g) and GMSG (301.5 ± 2.5 g), and significantly lower (P <= 0.0005) than the CG (358.4 ± 8.1 g). Growth rate was similar for all groups: OSG (0.80 ± 0.02 g), GMSG (0.81 ± 0.03 g) and CG (0.75 ± 0.02 g). In addition to providing a good protein intake and inducing less weight gain, both types of soy were utilized in a manner similar to that of casein, suggesting that the protein quality of soy is similar to that of the standard protein casein. The groups fed soy-based diet gained less weight, which may be considered to be beneficial for health. We conclude that organic and transgenic soy can be fed throughout life to rats in place of animal protein, because contain high quality protein and do not cause a marked increase in body weight.
Resumo:
Introduction Although the initiation of highly active antiretroviral therapy (HAART) is accompanied by an attenuation of viral load, metabolic disorders characterized by hyperglycemia, dyslipidemia, and lipodystrophy are often observed in patients under this treatment. Certain foods, such as oat bran, soy protein, and flaxseed, have been shown to improve a patient's lipid profile despite possible increases in uricemia. Thus, a bioactive compound was formulated using these foods to help patients with HIV/AIDS control metabolic disorders resulting from HAART. Methods An uncontrolled before and after study was performed. The total cholesterol, HDL-cholesterol, LDL-cholesterol, triglycerides, and uric acid before and after 3 months of consuming the formulation were compared in patients. The compound was formulated such that 40g (the recommended daily intake) contained approximately 10g of flaxseed, 20g of oat bran, and 10g of textured soy protein. Results The study population consisted of 139 patients, 31 of whom were included in the final analysis. There were no significant variations between the laboratory results obtained before and after consumption of the compound. Conclusions The regular consumption of the formulation together with individualized dietary guidance did not reduce lipid levels and did not contribute to an increase in uricemia in the study group. However, new studies with higher doses of the foods that compose the formulation should be encouraged to investigate whether these foods can positively influence the lipid profiles of these patients.
Resumo:
Laboratory and greenhouse studies were conducted with an artificial dry diet to rear nymphs, and with an artificial plant as substrate for egg laying by the southern green stink bug, Nezara viridula (L.). The artificial diet was composed of: soybean protein (15 g); potato starch (7.5 g); dextrose (7.5 g); sucrose (2.5 g); cellulose (12.5 g); vitamin mixture (niacinamide 1 g, calcium pantothenate 1 g, thiamine 0.25 g, riboflavin 0.5 g, pyridoxine 0.25 g, folic acid 0.25 g, biotin 0.02 mL, vitamin B12 1 g - added to 1,000 mL of distilled water) (5.0 mL); soybean oil (20 mL); wheat germ (17.9 g); and water (30 mL). Nymphs showed normal feeding behavior when fed on the artificial diet. Nymphal development time was longer than or similar to that of nymphs fed on soybean pods. Total nymphal mortality was low (ca. 30%), both for nymphs reared on the artificial diet, and for nymphs fed on soybean pods. At adult emergence, fresh body weights were significantly (P<0.01) less on the artificial diet than on soybean pods. Despite the lower adult survivorship and fecundity on artificial plants than on soybean plants, it was demonstrated for the first time that a model simulating a natural plant, can be used as a substrate for egg mass laying, in conjunction with the artificial diet.
Resumo:
Soft nanoparticles of size 200-400 nm were obtained from soybean protein isolate (SPI). The particles were formed and suspended in water by the coacervation of aqueous suspensions of SPI in hostile buffered aqueous solutions in the presence of surfactants. We investigate the effect of storage, ionic strength, and concentrations of SPI and surfactant on nanoparticle size and zeta potential. Transmission electron microscopy images and scattering techniques (SLS/ DLS) revealed that the particles are spherical, with hydrophilic chains at the surface.
Resumo:
This study was carried out to evaluate the effect of artificial supplements prepared with soybean protein isolate, brewer's yeast, mixture of soybean protein isolate with brewer's yeast, linseed oil, palm oil, and a mixture of linseed oil with palm oil on the physicochemical and microbiological composition of royal jelly produced by Africanized honey bee colonies. Considering these results, providing supplements for Africanized honeybee colonies subjected to royal jelly production can help and strengthen the technological development of the Brazilian beekeeping industry increasing its consumption in the national market. This research presents values of royal jelly a little different from those established by the Brazilian legislation. This fact shows that is important to discuss or change the official method for royal jelly analysis. The characterization of physicochemical and microbiological parameters is important in order to standardize fresh, frozen, and lyophilized royal jelly produced by Africanized honeybees.
Resumo:
No impact of Bt soybean that express Cry1Ac protein on biological traits of Euschistus heros (Hemiptera, Pentatomidae) and its egg parasitoid Telenomus podisi (Hymenoptera, Platygastridae). Biological traits of the stink bug Euschistus heros and its main biological control agent Telenomus podisi were evaluated under controlled environmental conditions (25 ± 2ºC; 60 ± 10% RH; and 14/10 h photoperiod) by placing first instar nymphs into Petri dishes with pods originating from two soybean isolines (Bt-soybean MON 87701 × MON 89788, which expresses the Cry1Ac protein, and its near non-Bt isoline A5547) where they remained until the adult stage. Due to gregarious behavior exhibited by first instar nymphs, they were individualized only when at the second instar. Adults were separated by sex and weighed, and pronotum width of each individual was subsequently measured. They were placed into plastic boxes containing soybean grains of the same soybean isoline as food source. Egg viability and female fecundity were assessed in adult individuals. Adult females of T. podisi (up to 24h old) were placed with eggs of E. heros from mothers reared on both soybean isolines. Nymphal development time, insect weight, pronotum width, sex ratio, female fecundity, and egg viability (% emergence) of Euschistus heros did not differ between treatments. Eggto-adult development time, female longevity, sex ratio, and percentage of parasitized eggs were not impacted by the Bt-soybean (expressing Cry1Ac protein). Results indicate that the Bt-soybean, MON 87701 × MON 89788, has no direct significant impact on the two studied species.
Resumo:
The objective of this work was to evaluate the effects of selection for high protein on seed physiological quality and grain yield of soybean. Four populations of BC1F4 and four of F4, each from a cross between a commercial variety and a line bearing high protein seeds, were used. The high protein content selection has a tendency to affect negatively the seed physiological quality. Estimates of correlation coefficients between protein content and grain yield were mostly negative but varied among populations. It is possible to obtain lines with high protein content, keeping the grain yield and the seed physiological quality of their respective recurrent progenitors.
Resumo:
The objectives of this study were to detect quantitative trait loci (QTL) for protein content in soybean grown in two distinct tropical environments and to build a genetic map for protein content. One hundred eighteen soybean recombinant inbred lines (RIL), obtained from a cross between cultivars BARC 8 and Garimpo, were used. The RIL were cultivated in two distinct Brazilian tropical environments: Cascavel county, in Paraná, and Viçosa county, in Minas Gerais (24º57'S, 53º27'W and 20º45'S, 42º52'W, respectively). Sixty-six SSR primer pairs and 65 RAPD primers were polymorphic and segregated at a 1:1 proportion. Thirty poorly saturated linkage groups were obtained, with 90 markers and 41 nonlinked markers. For the lines cultivated in Cascavel, three QTL were mapped in C2, E and N linkage groups, which explained 14.37, 10.31 and 7.34% of the phenotypic variation of protein content, respectively. For the lines cultivated in Viçosa, two QTL were mapped in linkage groups G and #1, which explained 9.51 and 7.34% of the phenotypic variation of protein content. Based on the mean of the two environments, two QTL were identified: one in the linkage group E (9.90%) and other in the group L (7.11%). In order for future studies to consistently detect QTL effects of different environments, genotypes with greater stability should be used.
Resumo:
The objective of this work was to quantify the accumulation of the major seed storage protein subunits, β-conglycinin and glycinin, and how they influence yield and protein and oil contents in high-protein soybean genotypes. The relative accumulation of subunits was calculated by scanning SDS-PAGE gels using densitometry. The protein content of the tested genotypes was higher than control cultivar in the same maturity group. Several genotypes with improved protein content and with unchanged yield or oil content were developed as a result of new breeding initiatives. This research confirmed that high-protein cultivars accumulate higher amounts of glycinin and β-conglycinin. Genotypes KO5427, KO5428, and KO5429, which accumulated lower quantities of all subunits of glycinin and β-conglycinin, were the only exceptions. Attention should be given to genotypes KO5314 and KO5317, which accumulated significantly higher amounts of both subunits of glycinin, and to genotypes KO5425, KO5319, KO539 and KO536, which accumulated significantly higher amounts of β-conglycinin subunits. These findings suggest that some of the tested genotypes could be beneficial in different breeding programs aimed at the production of agronomically viable plants, yielding high-protein seed with specific composition of storage proteins for specific food applications.
Resumo:
The objective of this work was to identify by biometric analyses the most stable soybean parents, with higher oil or protein contents, cultivated at different seasons and locations of the state of Minas Gerais, Brazil. Forty-nine genotypes were evaluated in the municipalities of Viçosa, Visconde do Rio Branco, and São Gotardo, in the state of Minas Gerais, from 2009 to 2011. Protein and oil contents were analyzed by infrared spectrometry using a FT-NIR analyzer. The effects of genotype, environment, and genotype x environment interaction were significant. The BARC-8 soybean genotype is the best parent to increase protein contents in the progenies, followed by BR 8014887 and CS 3032PTA276-3-4. Selection for high oil content is more efficient when the crossings involve the Suprema, CD 01RR8384, and A7002 genotypes, which show high mean phenotypic values, wide adaptability, and greater stability to environmental variation.
Resumo:
The soybean is a protein source of high biological value. However, the presence of anti-nutritional factors affects its protein quality and limits the bioavailability of other nutrients. The effect of heat-treatment, 150 ºC for 30 minutes, on hulled and hull-less soybean flour from the cultivar UFVTN 105AP on urease, trypsin inhibitor activity, protein solubility, amino acid profile, and in vivo protein quality was investigated. The treatment reduced the trypsin inhibitor activity and urease, but it did not affect protein solubility. Protein Efficiency Coefficient (PER) values of the flours were similar, and the PER of the hull-less soybean flour did not differ from casein. The Net Protein Ratio (NPR) did not differ between the experimental groups. The True Digestibility (TD) of the flours did not differ, but both were lower in casein and the Protein Digestibility Corrected Amino Acid Score (PDCCAS) was lower than the TD, due to limited valine determined by the chemical score. Therefore, the flours showed reduced anti-nutritional phytochemicals and similar protein quality, and therefore the whole flours can be used as a source of high quality protein.
Resumo:
In Brazilian agriculture, urea is the most commonly used nitrogen (N) source, in spite of having the disadvantage of losing considerable amounts of N by ammonia-N volatilization. The objectives of this study were to evaluate: N lossby ammonia volatilization from: [urea coated with copper sulfate and boric acid], [urea coated with zeolite], [urea+ammonium sulfate], [urea coated with copper sulfate and boric acid+ammonium sulfate], [common urea] and [ammonium nitrate]; and the effect of these N source son the maize yield in terms of amount and quality. The treatments were applied to the surface of a soil under no-tillage maize, in two growing seasons. The first season (2009/2010) was after a maize crop (maize straw left on the soil surface) and the second cycle (2012/2011) after a soybean crop. Due to the weather conditions during the experiments, the volatilization of ammonia-N was highest in the first four days after application of the N sources. Of all urea sources, under volatilization-favorable conditions, the loss of ammonia from urea coated with copper sulfate and boric acid was lowest, while under high rainfall, the losses from the different urea sources was similar, i.e., an adequate rainfall was favorablet o reduce volatilization. The ammonia volatilization losses were greatest in the first four days after application. Maize grain yield differed due to N application and in the treatments, but this was only observed with cultivation of maize crop residues in 2009/2010. The combination of ammonium+urea coated with copper sulfate and boric acid optimized grain yield compared to the other urea treatments. The crude protein concentration in maize was not influenced by the technologies of urea coating.
Resumo:
A work was carried out with the purpose of verifying the biochemical changes associated to soybean (Glycine max (L.) Merrill) seeds osmoconditioning. Seeds of the UFV 10, IAC 8 and Doko RC cultivars harvested at R8 development stage and submitted to different treatments were used. The biochemical evaluations were performed during seed storage, after the hydration-dehydration process. Initially, seeds were osmoconditioned in a polyethylene glycol (PEG 6000) solution, with the osmotic potential of -0.8 MPa and 20ºC, for a period of four days. After that, seeds were dried back until the initial moisture content (10-11%) and stored in natural conditions for three and six months. Two controls were used: untreated seeds (dry seeds) and water soaked seeds. Seed changes in protein and lipid, hexanal accumulation and fatty acids contents were evaluated. The results showed that seed storage under laboratory natural conditions caused reduction in protein, lipid and polyunsaturated fatty acids content and promoted hexanal production. Storage periods reduced protein levels for all treatments, however the PEG 6000 treatment showed lower protein reduction. The soybean seed storage increased hexanal production, but hexanal levels were smaller with osmoconditioning comparing to the other imbibition treatments.