25 resultados para tethered swimming
em Scielo Saúde Pública - SP
Resumo:
The schooling behavior of Hyla semilineata Spix, 1824 tadpoles is described. Experiments were carried out both in the natural environment and under controlled conditions to quantify the constant movement of these tadpoles. Bullfrog tadpoles (Rana catesbeiana Shaw, 1802), similar in size to the H. semilineata larvae, were used as controls in the experiments. Hyla semilineata tadpoles remained stationary for one sixth of the time that the bullfrog tadpoles did and the number of individuals of H. semilineata moving at any given moment was about seven times greater. The schooling behavior and constant swimming behavior of these tadpoles may enhance the effect of their warning coloration.
Resumo:
Vaccines have had an unquestionable impact on public health during the last century. The most likely reason for the success of vaccines is the robust protective properties of specific antibodies. However, antibodies exert a strong selective pressure and many microorganisms, such as the obligatory intracellular parasite Trypanosoma cruzi, have been selected to survive in their presence. Although the host develops a strong immune response to T. cruzi, they do not clear the infection and instead progress to the chronic phase of the disease. Parasite persistence during the chronic phase of infection is now considered the main factor contributing to the chronic symptoms of the disease. Based on this finding, containment of parasite growth and survival may be one method to avoid the immunopathology of the chronic phase. In this context, vaccinologists have looked over the past 20 years for other immune effector mechanisms that could eliminate these antibody-resistant pathogens. We and others have tested the hypothesis that non-antibody-mediated cellular immune responses (CD4+ Th1 and CD8+ Tc1 cells) to specific parasite antigens/genes expressed by T. cruzi could indeed be used for the purpose of vaccination. This hypothesis was confirmed in different mouse models, indicating a possible path for vaccine development.
Resumo:
The swimming behavior exhibited by specimens of L. fasciatus and O. uniformis was analyzed frame-by-frame with video observation recorded with a digital camera, attached to a stereomicroscope. Adults of O. uniformis, an aquatic insect, swim with all three pairs of legs. During the process of swimming the majority of the abdomen and rostrum remain submerged, part of the fore and hind tibiae remain above the surface, while the mid tibiae remain submerged. The mesothoracic legs, during the power-stroke stage, provide the greatest thrust while the metathoracic legs provide the least forward propulsion. The prothoracic legs, extended forward, help to direct the swimming. The semi-aquatic specie L. fasciatus shows the same swimming style as O. uniformis, that is, with movement of all the three pairs of legs; the mesothoracic legs are responsible for the main propulsion. The insect body remains on the water surface during the process of swimming, while the legs remain submerged. Both species complete a swimming cycle in 0.33 and 0.32 seconds, respectively, with an average speed of 1.38 cm/s and a maximum and minimum swimming duration time of 11.15 and 5.05 minutes, respectively, for L. fasciatus. The swimming behavior exhibited by O. uniformis and L. fasciatus corresponds to the style known as a breast strokelike maneuver. This is the first record of this kind of swimming for both species here observed and increases to seven the number of genera of Curculionidae exhibiting this behavior.
Resumo:
The objective of this work was to evaluate the effect of sustained swimming and dietary protein levels on growth and hematological responses of juvenile pacu (Piaractus mesopotamicus). A completely randomized design was used in a 3x2 factorial arrangement, with three levels of dietary protein (24, 28, and 32% crude protein), two rearing conditions (sustained swimming or motionless water), and 15 replicates. Fish were subjected to sustained swimming at the velocity of two body lengths per second (2 BL s-1), for 45 days. The level of dietary protein and the swimming conditions affected the performance, growth, and hematological profile of pacu. Swimming conditions influenced nutritional factors, increasing daily weight gain, specific growth rate, number of erythrocytes, mean corpuscular volume, and mean corpuscular hemoglobin. Fish under sustained swimming and fed with 24% crude protein showed better growth performance, with higher specific growth rate (4.11±0.88) and higher daily weight gain (2.19±0.47 g per day). Sustained swimming can increase the productive performance of pacu and simultaneously reduce dietary protein levels.
Resumo:
The present study evaluated the correlation between the behavior of mice in the forced swimming test (FST) and in the elevated plus-maze (PM). The effect of the order of the experiments, i.e., the influence of the first test (FST or PM) on mouse behavior in the second test (PM or FST, respectively) was compared to handled animals (HAND). The execution of FST one week before the plus-maze (FST-PM, N = 10), in comparison to mice that were only handled (HAND-PM, N = 10) in week 1, decreased % open entries (HAND-PM: 33.6 ± 2.9; FST-PM: 20.0 ± 3.9; mean ± SEM; P<0.02) and % open time (HAND-PM: 18.9 ± 3.3; FST-PM: 9.0 ± 1.9; P<0.03), suggesting an anxiogenic effect. No significant effect was seen in the number of closed arm entries (FST-PM: 9.5 (7.0-11.0); HAND-PM: 10.0 (4.0-14.5), median (interquartile range); U = 46.5; P>0.10). A prior test in the plus-maze (PM-FST) did not change % immobility time in the FST when compared to the HAND-FST group (HAND-FST: 57.7 ± 3.9; PM-FST: 65.7 ± 3.2; mean ± SEM; P>0.10). Since these data suggest that there is an order effect, the correlation was evaluated separately with each test sequence: FST-PM (N = 20) and PM-FST (N = 18). There was no significant correlation between % immobility time in the FST and plus-maze indexes (% time and entries in open arms) in any test sequence (r: -0.07 to 0.18). These data suggest that mouse behavior in the elevated plus-maze is not related to behavior in the forced swimming test and that a forced swimming test before the plus-maze has an anxiogenic effect even after a one-week interval.
Resumo:
We investigated whether stress interferes with fertility during adulthood. Male Wistar rats (weighing 220 g in the beginning of the experiment) were forced to swim for 3 min in water at 32ºC daily for 15 days. Stress was assessed by the hot-plate test after the last stressing session. To assess fertility, control and stressed males (N = 15 per group) were mated with sexually mature normal females. Males were sacrificed after copulation. Stress caused by forced swimming was demonstrated by a significant increase in the latency of the pain response in the hot-plate test (14.6 ± 1.25 s for control males vs 26.0 ± 1.53 s for stressed males, P = 0.0004). No changes were observed in body weight, testicular weight, seminal vesicle weight, ventral prostate weight or gross histological features of the testes of stressed males. Similarly, no changes were observed in fertility rate, measured by counting live fetuses in the uterus of normal females mated with control and stressed males; no dead or incompletely developed fetuses were observed in the uterus of either group. In contrast, there was a statistically significant decrease in spermatid production demonstrated by histometric evaluation (154.96 ± 5.41 vs 127.02 ± 3.95 spermatids per tubular section for control and stressed rats, respectively, P = 0.001). These data demonstrate that 15 days of forced swimming stress applied to adult male rats did not impair fertility, but significantly decreased spermatid production. This suggests that the effect of stress on fertility should not be assessed before at least the time required for one cycle of spermatogenesis.
Resumo:
Exercise training associated with robust conditioning can be useful for the study of molecular mechanisms underlying exercise-induced cardiac hypertrophy. A swimming apparatus is described to control training regimens in terms of duration, load, and frequency of exercise. Mice were submitted to 60- vs 90-min session/day, once vs twice a day, with 2 or 4% of the weight of the mouse or no workload attached to the tail, for 4 vs 6 weeks of exercise training. Blood pressure was unchanged in all groups while resting heart rate decreased in the trained groups (8-18%). Skeletal muscle citrate synthase activity, measured spectrophotometrically, increased (45-58%) only as a result of duration and frequency-controlled exercise training, indicating that endurance conditioning was obtained. In groups which received duration and endurance conditioning, cardiac weight (14-25%) and myocyte dimension (13-20%) increased. The best conditioning protocol to promote physiological hypertrophy, our primary goal in the present study, was 90 min, twice a day, 5 days a week for 4 weeks with no overload attached to the body. Thus, duration- and frequency-controlled exercise training in mice induces a significant conditioning response qualitatively similar to that observed in humans.
Resumo:
The effect of swimming training (ST) on vagal and sympathetic cardiac effects was investigated in sedentary (S, N = 12) and trained (T, N = 12) male Wistar rats (200-220 g). ST consisted of 60-min swimming sessions 5 days/week for 8 weeks, with a 5% body weight load attached to the tail. The effect of the autonomic nervous system in generating training-induced resting bradycardia (RB) was examined indirectly after cardiac muscarinic and adrenergic receptor blockade. Cardiac hypertrophy was evaluated by cardiac weight and myocyte morphometry. Plasma catecholamine concentrations and citrate synthase activity in soleus muscle were also determined in both groups. Resting heart rate was significantly reduced in T rats (355 ± 16 vs 330 ± 20 bpm). RB was associated with a significantly increased cardiac vagal effect in T rats (103 ± 25 vs 158 ± 40 bpm), since the sympathetic cardiac effect and intrinsic heart rate were similar for the two groups. Likewise, no significant difference was observed for plasma catecholamine concentrations between S and T rats. In T rats, left ventricle weight (13%) and myocyte dimension (21%) were significantly increased, suggesting cardiac hypertrophy. Skeletal muscle citrate synthase activity was significantly increased by 52% in T rats, indicating endurance conditioning. These data suggest that RB induced by ST is mainly mediated parasympathetically and differs from other training modes, like running, that seems to mainly decrease intrinsic heart rate in rats. The increased cardiac vagal activity associated with ST is of clinical relevance, since both are related to increased life expectancy and prevention of cardiac events.
Resumo:
The aim of the present investigation was to study the effect of acute swimming training with an anaerobic component on matrix metallopeptidase (MMP) activity and myosin heavy chain gene expression in the rat myocardium. Animals (male Wistar rats, weighing approximately 180 g) were trained for 6 h/day in 3 sessions of 2 h each for 1 to 5 consecutive days (N = 5 rats per group). Rats swam in basins 47 cm in diameter and 60 cm deep filled with water at 33 to 35ºC. After the training period a significant increase (P < 0.05) was observed in the heart weight normalized to body weight by about 22 and 35% in the groups that trained for 96 and 120 h, respectively. Blood lactate levels were significantly increased (P < 0.05) in all groups after all training sessions, confirming an anaerobic component. However, lactate levels decreased (P < 0.05) with days of training, suggesting that the animals became adapted to this protocol. Myosin heavy chain-ß gene expression, analyzed by real time PCR and normalized with GAPDH gene expression, showed a significant two-fold increase (P < 0.01) after 5 days of training. Zymography analysis of myocardium extracts indicated a single ~60-kDa activity band that was significantly increased (P < 0.05) after 72, 96, and 120 h, indicating an increased expression of MMP-2 and suggesting precocious remodeling. Furthermore, the presence of MMP-2 was confirmed by Western blot analysis, but not the presence of MMP-1 and MMP-3. Taken together, our results indicate that in these training conditions, the rat heart undergoes early biochemical and functional changes required for the adaptation to the new physiological condition by tissue remodeling.
Resumo:
The objective of the present study was to determine to what extent, if any, swimming training applied before immobilization in a cast interferes with the rehabilitation process in rat muscles. Female Wistar rats, mean weight 260.52 ± 16.26 g, were divided into 4 groups of 6 rats each: control, 6 weeks under baseline conditions; trained, swimming training for 6 weeks; trained-immobilized, swimming training for 6 weeks and then immobilized for 1 week; trained-immobilized-rehabilitated, swimming training for 6 weeks, immobilized for 1 week and then remobilized with swimming for 2 weeks. The animals were then sacrificed and the soleus and tibialis anterior muscles were dissected, frozen in liquid nitrogen and processed histochemically (H&E and mATPase). Data were analyzed statistically by the mixed effects linear model (P < 0.05). Cytoarchitectural changes such as degenerative characteristics in the immobilized group and regenerative characteristics such as centralized nucleus, fiber size variation and cell fragmentation in the groups submitted to swimming were more significant in the soleus muscle. The diameters of the lesser soleus type 1 and type 2A fibers were significantly reduced in the trained-immobilized group compared to the trained group (P < 0.001). In the tibialis anterior, there was an increase in the number of type 2B fibers and a reduction in type 2A fibers when trained-immobilized rats were compared to trained rats (P < 0.001). In trained-immobilized-rehabilitated rats, there was a reduction in type 2B fibers and an increase in type 2A fibers compared to trained-immobilized rats (P < 0.009). We concluded that swimming training did not minimize the deleterious effects of immobilization on the muscles studied and that remobilization did not favor tissue re-adaptation.
Resumo:
The aim of the present study was to assess the effects of endurance training on leptin levels and adipose tissue gene expression and their association with insulin, body composition and energy intake. Male Wistar rats were randomly divided into two groups: trained (N = 18) and sedentary controls (N = 20). The trained group underwent swimming training for 9 weeks. Leptin and insulin levels, adiposity and leptin gene expression in epididymal and inguinal adipose tissue were determined after training. There were no differences in energy intake between groups. Trained rats had a decreased final body weight (-10%), relative and total body fat (-36 and -55%, respectively) and insulin levels (-55%) compared with controls (P < 0.05). Although trained animals showed 56% lower leptin levels (2.58 ± 1.05 vs 5.89 ± 2.89 ng/mL in control; P < 0.05), no difference in leptin gene expression in either fat depot was demonstrable between groups. Stepwise multiple regression analysis showed that lower leptin levels in trained rats were due primarily to their lower body fat mass. After adjustment for total body fat, leptin levels were still 20% (P < 0.05) lower in exercised rats. In conclusion, nine weeks of swimming training did not affect leptin gene expression, but did lead to a decrease in leptin levels that was independent of changes in body fat.
Resumo:
We determined the effect of long-term aerobic swimming training regimens of different intensities on colonic carcinogenesis in rats. Male Wistar rats (11 weeks old) were given 4 subcutaneous injections (40 mg/kg body weight each) of 1,2-dimethyl-hydrazine (DMH, dissolved in 0.9% NaCl containing 1.5% EDTA, pH 6.5), at 3-day intervals and divided into three exercise groups that swam with 0% body weight (EG1, N = 11), 2% body weight (EG2, N = 11), and 4% body weight of load (EG3, N = 10), 20 min/day, 5 days/week for 35 weeks, and one sedentary control group (CG, N = 10). At sacrifice, the colon was removed and counted for tumors and aberrant crypt foci. Tumor size was measured and intra-abdominal fat was weighed. The mean number of aberrant crypt foci was reduced only for EG2 compared to CG (26.21 ± 2.99 vs 36.40 ± 1.53 crypts; P < 0.05). Tumor incidence was not significantly different among groups (CG: 90%; EG1: 72.7%; EG2: 90%; EG3: 80%). Swimming training did not affect either tumor multiplicity (CG: 2.30 ± 0.58; EG1: 2.09 ± 0.44; EG2: 1.27 ± 0.19; EG3: 1.50 ± 0.48 tumors) or size (CG: 1.78 ± 0.24; EG1: 1.81 ± 0.14; EG2: 1.55 ± 0.21; EG3: 2.17 ± 0.22 cm³). Intra-abdominal fat was not significantly different among groups (CG: 10.54 ± 2.73; EG1: 6.12 ± 1.15; EG2: 7.85 ± 1.24; EG3: 5.11 ± 0.74 g). Aerobic swimming training with 2% body weight of load protected against the DMH-induced preneoplastic colon lesions, but not against tumor development in the rat.
Resumo:
Our objective was to determine lipid peroxidation and nuclear factor-κB (NF-κB) activation in skeletal muscle and the plasma cytokine profile following maximum progressive swimming. Adult male Swiss mice (N = 15) adapted to the aquatic environment were randomly divided into three groups: immediately after exercise (EX1), 3 h after exercise (EX2) and control. Animals from the exercising groups swam until exhaustion, with an initial workload of 2% of body mass attached to the tail. Control mice did not perform any exercise but were kept immersed in water for 20 min. Maximum swimming led to reactive oxygen species (ROS) generation in skeletal muscle, as indicated by increased thiobarbituric acid reactive species (TBARS) levels (4062.67 ±1487.10 vs 19,072.48 ± 8738.16 nmol malondialdehyde (MDA)/mg protein, control vs EX1). Exercise also promoted NF-κB activation in soleus muscle. Cytokine secretion following exercise was marked by increased plasma interleukin-6 (IL-6) levels 3 h post-exercise (P < 0.05). Interleukin-10 (IL-10) levels were reduced following exercise and remained reduced 3 h post-exercise (P < 0.05). Plasma levels of other cytokines investigated, monocyte chemotactic protein-1 (MCP-1), tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ) and interleukin-12 (IL-12), were not altered by exercise. The present findings showed that maximum swimming, as well as other exercise models, led to lipid peroxidation and NF-κB activation in skeletal muscle and increased plasma IL-6 levels. The plasma cytokine response was also marked by reduced IL-10 levels. These results were attributed to exercise type and intensity.
Resumo:
Hoodia gordonii is a plant species used traditionally in southern Africa to suppress appetite. Recently, it has been associated with a significant increase in blood pressure and pulse rate in women, suggesting sympathomimetic activity. The present study investigated the possible antidepressant-like effects of acute and repeated (15 days) administration of H. gordonii extract (25 and 50 mg/kg, po) to mice exposed to a forced swimming test (FST). Neurochemical analysis of brain monoamines was also carried out to determine the involvement of the monoaminergic system on these effects. Acute administration of H. gordonii decreased the immobility of mice in the FST without accompanying changes in general activity in the open-field test during acute treatment, suggesting an antidepressant-like effect. The anti-immobility effect of H. gordonii was prevented by pretreatment of mice with PCPA [an inhibitor of serotonin (5-HT) synthesis], NAN-190 (a 5-HT1A antagonist), ritanserin (a 5-HT2A/2C antagonist), ondansetron (a 5-HT3A antagonist), prazosin (an α1-adrenoceptor antagonist), SCH23390 (a D1 receptor antagonist), yohimbine (an α2-adrenoceptor antagonist), and sulpiride (a D2 receptor antagonist). A significant increase in 5-HT levels in the striatum was detected after acute administration, while 5-HT, norepinephrine and dopamine were significantly elevated after chronic treatment. Results indicated that H. gordonii possesses antidepressant-like activity in the FST by altering the dopaminergic, serotonergic, and noradrenergic systems.
Resumo:
Exercise is known to cause a vasodilatory response; however, the correlation between the vasorelaxant response and different training intensities has not been investigated. Therefore, this study evaluated the vascular reactivity and lipid peroxidation after different intensities of swimming exercise in rats. Male Wistar rats (aged 8 weeks; 250-300 g) underwent forced swimming for 1 h whilst tied to loads of 3, 4, 5, 6, and 8% of their body weight, respectively (groups G3, G4, G5, G6 and G8, respectively; n=5 each). Immediately after the test, the aorta was removed and suspended in an organ bath. Cumulative relaxation in response to acetylcholine (10−12-10−4 M) and contraction in response to phenylephrine (10−12-10−5 M) were measured. Oxidative stress was estimated by determining malondialdehyde concentration. The percentages of aorta relaxation were significantly higher in G3 (7.9±0.20), G4 (7.8±0.29), and G5 (7.9±0.21), compared to the control group (7.2±0.04), while relaxation in the G6 (7.4±0.25) and G8 (7.0±0.06) groups was similar to the control group. In contrast, the percentage of contraction was significantly higher in G6 (8.8 ±0.1) and G8 (9.7±0.29) compared to the control (7.1±0.1), G3 (7.3±0.2), G4 (7.2±0.1) and G5 (7.2±0.2%) groups. Lipid peroxidation levels in the aorta were similar to control levels in G3, G4 and G5, but higher in G6 and G8, and significantly higher in G8 (one-way ANOVA). These results indicate a reduction in vasorelaxing activity and an increase in contractile activity in rat aortas after high-intensity exercise, followed by an increase in lipid peroxidation.