39 resultados para system structure
em Scielo Saúde Pública - SP
Resumo:
Gap junction channels are sites of cytoplasmic communication between contacting cells. In vertebrates, they consist of protein subunits denoted connexins (Cxs) which are encoded by a gene family. According to their Cx composition, gap junction channels show different gating and permeability properties that define which ions and small molecules permeate them. Differences in Cx primary sequences suggest that channels composed of different Cxs are regulated differentially by intracellular pathways under specific physiological conditions. Functional roles of gap junction channels could be defined by the relative importance of permeant substances, resulting in coordination of electrical and/or metabolic cellular responses. Cells of the native and specific immune systems establish transient homo- and heterocellular contacts at various steps of the immune response. Morphological and functional studies reported during the last three decades have revealed that many intercellular contacts between cells in the immune response present gap junctions or "gap junction-like" structures. Partial characterization of the molecular composition of some of these plasma membrane structures and regulatory mechanisms that control them have been published recently. Studies designed to elucidate their physiological roles suggest that they might permit coordination of cellular events which favor the effective and timely response of the immune system.
Resumo:
This study aims to analyze the impacts of the reservoir network within Pereira de Miranda - CE catchment (also called Pentecoste) over sediment transport and storage capacity of the system. The survey of the "damming" was carried out using satellite images. We identified 502 erosion units, derived from overlaying maps of the Universal Soil Loss Equation parameters, which allowed the estimation of localized erosion in the basin and identification of areas potentially generating sediment. In order to estimate silting in Pentecoste reservoir, different system structure scenarios were considered. An average erosion rate of 59 t ha-1year-1 was estimated. According to the model, the silting of Pentecoste reservoir may vary from 1.1 to 2.6% per decade, depending on the scenario considered. It is also observed that the reservoirs upstream can retain up to 58% of the sediment that would reach the Pentecoste reservoir. Very small reservoirs with a capacity of up to 100,000 m³, although representing only 1.83% of the system water availability, are able to retain almost 8% of total sediment produced.
Resumo:
Receptors for interleukin 2 (IL-2) esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta]) chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s) and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.
Resumo:
For twelve months (from January to December of 1996) we investigated bee-flower interactions in a sea coastal ecosystem in Bahia, Brazil. Samples were taken three times each month. 3983 individuals belonging to 49 bee species, grouped in 13 morph-functional categories, visited 66 plant species belonging to 39 botanic families. It was observed 310 interactions between bees and plants at species level. The use of floral resources by bees was not homogeneous; most of the plant species received a low number of visitors. No restricted plant-bee species relationship in resource use concerning the subset of analyzed interactions was detected. In Abaeté the generalist relationships predominated.
Resumo:
The participation of the kallikrein-kinin system, comprising the serine proteases kallikreins, the protein substrates kininogens and the effective peptides kinins, in some pathological processes like hypertension and cardiovascular diseases is still a matter of controversy. The use of different experimental set-ups in concert with the development of potent and specific inhibitors and antagonists for the system has highlighted its importance but the results still lack conclusivity. Over the last few years, transgenic and gene-targeting technologies associated with molecular biology tools have provided specific information about the elusive role of the kallikrein-kinin system in the control of blood pressure and electrolyte homeostasis. cDNA and genomic sequences for kinin receptors B2 and B1 from different species were isolated and shown to encode G-protein-coupled receptors and the structure and pharmacology of the receptors were characterized. Transgenic animals expressing an overactive kallikrein-kinin system were established to study the cardiovascular effects of these alterations and the results of these investigations further corroborate the importance of this system in the maintenance of normal blood pressure. Knockout animals for B2 and B1 receptors are available and their analysis also points to the role of these receptors in cardiovascular regulation and inflammatory processes. In this paper the most recent and relevant genetic animal models developed for the study of the kallikrein-kinin system are reviewed, and the advances they brought to the understanding of the biological role of this system are discussed.
Resumo:
Previous genetic association studies have overlooked the potential for biased results when analyzing different population structures in ethnically diverse populations. The purpose of the present study was to quantify this bias in two-locus association studies conducted on an admixtured urban population. We studied the genetic structure distribution of angiotensin-converting enzyme insertion/deletion (ACE I/D) and angiotensinogen methionine/threonine (M/T) polymorphisms in 382 subjects from three subgroups in a highly admixtured urban population. Group I included 150 white subjects; group II, 142 mulatto subjects, and group III, 90 black subjects. We conducted sample size simulation studies using these data in different genetic models of gene action and interaction and used genetic distance calculation algorithms to help determine the population structure for the studied loci. Our results showed a statistically different population structure distribution of both ACE I/D (P = 0.02, OR = 1.56, 95% CI = 1.05-2.33 for the D allele, white versus black subgroup) and angiotensinogen M/T polymorphism (P = 0.007, OR = 1.71, 95% CI = 1.14-2.58 for the T allele, white versus black subgroup). Different sample sizes are predicted to be determinant of the power to detect a given genotypic association with a particular phenotype when conducting two-locus association studies in admixtured populations. In addition, the postulated genetic model is also a major determinant of the power to detect any association in a given sample size. The present simulation study helped to demonstrate the complex interrelation among ethnicity, power of the association, and the postulated genetic model of action of a particular allele in the context of clustering studies. This information is essential for the correct planning and interpretation of future association studies conducted on this population.
Resumo:
In the last five years, climate change has been established as a central civilizational driver of our time. As a result of this development, the most diversified social processes - as well as the fields of science which study them - have had their dynamics altered. In International Relations, this double challenge could be explained as follows: 1) in empirical terms, climate change imposes a deepening of cooperation levels on the international community, considering the global common character of the atmosphere; and 2) to International Relations as a discipline, climate change demands from the scientific community a conceptual review of the categories designed to approach the development of global climate governance. The goal of this article is to discuss in both conceptual and empirical terms the structure of global climate change governance, through an exploratory research, aiming at identifying the key elements that allow understanding its dynamics. To do so, we rely on the concept of climate powers. This discussion is grounded in the following framework: we now live in an international system under conservative hegemony that is unable to properly respond to the problems of interdependence, among which - and mainly -, the climate issue.
Resumo:
Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots) with 0 and 2000 kg ha-1 of gypsum (subplots) and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m) as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.
Resumo:
ABSTRACT OBJECTIVE To examine whether the level of complexity of the services structure and sociodemographic and clinical characteristics of patients in hemodialysis are associated with the prevalence of poor health self-assessment. METHODS In this cross-sectional study, we evaluated 1,621 patients with chronic terminal kidney disease on hemodialysis accompanied in 81 dialysis services in the Brazilian Unified Health System in 2007. Sampling was performed by conglomerate in two stages and a structured questionnaire was applied to participants. Multilevel multiple logistic regression was used for data analysis. RESULTS The prevalence of poor health self-assessment was of 54.5%, and in multivariable analysis it was associated with the following variables: increasing age (OR = 1.02; 95%CI 1.01–1.02), separated or divorced marital status (OR = 0.62; 95%CI 0.34–0.88), having 12 years or more of study (OR = 0.51; 95%CI 0.37–0.71), spending more than 60 minutes in commuting between home and the dialysis service (OR = 1.80; 95%CI 1.29–2.51), having three or more self-referred diseases (OR = 2.20; 95%CI 1.33–3.62), and reporting some (OR = 2.17; 95%CI 1.66–2.84) or a lot of (OR = 2.74; 95%CI 2.04–3.68) trouble falling asleep. Individuals in treatment in dialysis services with the highest level of complexity in the structure presented less chance of performing a self-assessment of their health as bad (OR = 0.59; 95%CI 0.42–0.84). CONCLUSIONS We showed poor health self-assessment is associated with age, years of formal education, marital status, home commuting time to the dialysis service, number of self-referred diseases, report of trouble sleeping, and also with the level of complexity of the structure of health services. Acknowledging these factors can contribute to the development of strategies to improve the health of patients in hemodialysis in the Brazilian Unified Health System.
Resumo:
The morphology of the spiracles of fourth instar larva in eight sandfly species were examined by light and scanning electron microscopy. Species studied were: Lutzomyia longipalpis (Lutz & Neiva), L. ovallesi (Ortiz), L. youngi Feliciangeli & Murillo, L. evansi (Nuñez-Tovar), L. trinidadensis (Newstead), L. migonei (França), L. absonodonta Feliciangeli, and L. venezuelensis (Floch & Abonnenc). In larvae of all eight species both thoracic and abdominal spiracles are located at the top of a globular bulge. Their structure consists of a spiracular plate with a sclerotized central portion and a rose-like peripheral portion. The latter has circularly arranged papillae, separated from each other by elongated septa. Each papilla is longitudinally crossed by a fine cleft dividing it into two identical parts. The taxonomic and adaptative value of spiracular morphology is discussed
Resumo:
Fifty-five clinical and environmental Aspergillus fumigatus isolates from Mexico, Argentina, France and Peru were analyzed to determine their genetic variability, reproductive system and level of differentiation using amplified fragment length polymorphism markers. The level of genetic variability was assessed by measuring the percentage of polymorphic loci, number of effective alleles, expected heterozygocity and by performing an association index test (I A). The degree of genetic differentiation and variation was determined using analysis of molecular variance at three levels. Using the paired genetic distances, a dendrogram was built to detect the genetic relationship among alleles. Finally, a network of haplotypes was constructed to determine the geographic relationship among them. The results indicate that the clinical isolates have greater genetic variability than the environmental isolates. The I A of the clinical and environmental isolates suggests a recombining population structure. The genetic differentiation among isolates and the dendrogram suggest that the groups of isolates are different. The network of haplotypes demonstrates that the majority of the isolates are grouped according to geographic origin.
Resumo:
Objective: This study aimed to describe the structure of governmental surveillance systems for Healthcare Associated Infection (HAI) in the Brazilian Southeastern and Southern States. Method: A cross-sectional, descriptive and exploratory study, with data collection by means of two-phases: characterization of the healthcare structure and of the HAI surveillance system. Results: The governmental teams for prevention and control of HAI in each State ranged from one to six members, having at least one nurse. All States implemented their own surveillance system. The information systems were classified into chain (n=2), circle (n=4) or wheel (n=1). Conclusion: Were identified differences in the structure and information flow from governmental surveillance systems, possibly limiting a nationwide standardization. The present study points to the need for establishing minimum requirements in public policies, in order to guide the development of HAI surveillance systems.
Resumo:
Different management systems tend to modify soil structure and porosity over the years. The aim of this study was to study modifications in the morphostructure and porosity of dystroferric Red Latosol (Oxisol) under conventional tillage and no-tillage over a 31- year period. The study began with the description of soil profiles based on the cropping profile method, to identify the most compact structures, define sample collection points for physical and chemical analysis, and determine the water retention curve. A forest soil profile was described and used as reference. The results showed that, under conventional tillage, the microaggregate structure of the Oxisol was fragmented between 0 and 0.20 m, and compact (bulk density = 1.52 Mg m-3) in the sub-surface layer between 0.20 and 0.50 m. Under no-tillage, the structure became compacted (bulk density = 1.40 Mg m-3) between 0 and 0.60 m, but contained fissures and biopores. The volume of the class with a pore diameter of > 100 µm under no-tillage was limited, but practically non-existent in the conventional management system. On the other hand, the classes with a pore diameter of < 100 µm were not affected by the type of soil management system.
Resumo:
Soil physical quality is essential to global sustainability of agroecosystems, once it is related to processes that are essential to agricultural crop development. This study aimed to evaluate physical attributes of a Yellow Latossol under different management systems in the savanna area in the state of Piaui. This study was developed in Uruçuí southwest of the state of Piauí. Three systems of soil management were studied: an area under conventional tillage (CT) with disk plowi and heavy harrow and soybean crop; an area under no-tillage with soybean-maize rotation and millet as cover crop (NT + M); two areas under Integrated Crop-Livestock System, with five-month pasture grazing and soybean cultivation and then continuous pasture grazing (ICL + S and ICL + P, respectively). Also, an area under Native Forest (NF) was studied. The soil depths studied were 0.00-0.05, 0.05-0.10 and 0.10-0.20 m. Soil bulk density, as well as porosity and stability of soil aggregates were analyzed as physical attributes. Anthropic action has changed the soil physical attributes, in depth, in most systems studied, in comparison to NF. In the 0.00 to 0.05 m depth, ICL + P showed higher soil bulk density value. As to macroporosity, there was no difference between the management systems studied and NF. The management systems studied changed the soil structure, having, as a result, a small proportion of soil in great aggregate classes (MWD). Converting native forest into agricultural production systems changes the soil physical quality. The Integrated Crop-Livestock System did not promote the improvement in soil physical quality.
Resumo:
Grazing intensities can influence soil aggregation, which can be temporarily and permanently affected. The objective of this study was to evaluate the aggregate stability in water at the end of a soybean cycle and during pasture development in a crop-livestock integration system under no-tillage and grazing intensities. The experiment was initiated in 2001, in a dystrophic Red Latosol, after soybean harvest. Treatments consisted of pasture (black oat + Italian ryegrass) at heights of 10, 20 and 40 cm, grazed by young cattle, and a control (no grazing), followed by soybean cultivation, in a randomized block design. Soil samples were collected at the end of the soybean cycle (May/2007), during animal grazing (September/2007) and at the end of the grazing cycle (November/2007). The grazing period influences aggregate distribution, since in the September sampling (0-5 cm layer), there was a higher proportion of aggregates > 4.76 mm at all grazing intensities. Soil aggregation is higher in no-tillage crop-livestock integration systems in grazed than in ungrazed areas.