13 resultados para surface oxygen complexes
em Scielo Saúde Pública - SP
Resumo:
The study of the reactions of organometallic complexes with the surfaces of inorganic oxides, zeolites and metals constitutes the basis of Surface Organometallic Chemistry (SOMC). The basic rules of organometallic chemistry are often valid when applied to surfaces and well-defined surface organometallic complexes can be obtained. These complexes can be used as heterogeneous catalysts or, by controlled reactions, can be transformed in other species useful for a given catalytic reaction. In some cases, these catalysts exhibit higher activity and/or selectivity than their analogous molecular complexes.
Resumo:
This paper reports an unusual pattern of serological HBV markers and the presence of HBsAg/anti-HBs immune complexes in serum samples from two patients with fulminant hepatitis from the Brazilian Western Amazon Basin. The diagnosis was made by both serologic tests and demonstration of antigen/antibody complexes by transmission electron microscopy. Concurrent Delta virus superinfection is also discussed.
Resumo:
We report that immune complexes of IgM (ICIgM) antibodies and ovalbumin in the form of a precipitate from the equivalence zone induce the generation of reactive oxygen species by rabbit blood polymorphonuclear leucocytes (PMN), as measured by the chemiluminescence (CL) production in the presence of luminol. The kinetics of CL generation induced by ICIgM is quite different from that induced by precipitated immune complexes of IgG (ICIgG): the maximum rate of CL production for ICIgM occurs around 14 min, whereas for ICIgG it occurs about 5 min after incubation with the cells. Also the triggering of the process requires a higher concentration of ICIgM than of ICIgG. Evidence is presented that these effects are not mediated by interaction of the antigen (ovalbumin) with the cell, since immune precipitates of ovalbumin and the F(ab')2 fragment had no effect. Our observations that precipitated ICIgM can also be an effective stimulus for CL generation and thus for O2- production reveal a new functional capability of PMN. These results may have implications for the understanding of the participation of ICIgM (as well as of ICIgG) in inflammatory reactions mediated by PMN in immune complex diseases, and in the mechanisms of defense against microbes and other non-self agents.
Resumo:
The production of reactive oxygen species (ROS) by polymorphonuclear leukocytes (PMN) can be induced by immune complexes and is an important component of phagocytosis in the killing of microorganisms, but can also be involved in inflammatory reactions when immune complexes are deposited in tissues. We have observed that fluid-phase IgG can inhibit the generation of ROS by rabbit PMN stimulated with precipitated immune complexes of IgG (ICIgG) in a dose-dependent manner, acting as a modulatory factor in the range of physiological IgG concentrations. This inhibitory effect is compatible with the known affinity (Kd) of monomeric IgG for the receptors involved (FcRII and FcRIII). The presence of complement components in the immune complexes results in a higher stimulation of ROS production. In this case, however, there is no inhibition by fluid-phase IgG. The effect of complement is strongly dependent on the presence of divalent cations (Ca2+ or Mg2+) in the medium, whereas the stimulation of ICIgG (without complement) does not depend on these cations. We have obtained some evidence indicating that iC3b should be the component involved in the effect of complement through interaction with the CR3 receptor. The absence of the inhibitory effect of fluid-phase IgG in ROS production when complement is present in the immune complex shows that complement may be important in vivo not only in the production of chemotactic factors for PMN, but also in the next phase of the process, i.e., the generation of ROS.
Resumo:
PURPOSE: To compare peak exercise oxygen consumption (VO2peak) of healthy individuals with asymptomatic individuals with probable heart disease. METHODS: Ninety-eight men were evaluated. They were divided into two groups: 1) 39 healthy individuals (group N) with an age range of 50±4.6 years; and 2) 59 asymptomatic individuals with signs of atherosclerotic and/or hypertensive heart disease (group C) with an age range of 51.9±10.4 years. In regard to age, height, body surface area, percentage of fat, lean body mass, and daily physical activity, both groups were statistically similar. Environmental conditions during the ergometric test were also controlled. RESULTS: Maximal aerobic power (watts), VO2peak, maximal heart rate, and maximal pulmonary ventilation were lower in group C (p<0.01) than in group N; weight, however, was lower in group N (p=0.031) than in group C. Differences in the respiratory gas exchange index, heart rate at rest, and the maximal double product of the two groups were not statistically significant. CONCLUSION: Signs of probable heart disease, even though asymptomatic, may reduce the functional capacity, perhaps due to the lower maximal cardiac output and/or muscle metabolic changes.
Resumo:
Establishment of the water layer in an irrigated rice crop leads to consumption of free oxygen in the soil which enters in a chemical reduction process mediated by anaerobic microorganisms, changing the crop environment. To maintain optimal growth in an environment without O2, rice plants develop pore spaces (aerenchyma) that allow O2 transport from air to the roots. Carrying capacity is determined by the rice genome and it may vary among cultivars. Plants that have higher capacity for formation of aerenchyma should theoretically carry more O2 to the roots. However, part of the O2 that reaches the roots is lost due to permeability of the roots and the O2 gradient created between the soil and roots. The O2 that is lost to the outside medium can react with chemically reduced elements present in the soil; one of them is iron, which reacts with oxygen and forms an iron plaque on the outer root surface. Therefore, evaluation of the iron plaque and of the formation of pore spaces on the root can serve as a parameter to differentiate rice cultivars in regard to the volume of O2 transported via aerenchyma. An experiment was thus carried out in a greenhouse with the aim of comparing aerenchyma and iron plaque formation in 13 rice cultivars grown in flooded soils to their formation under growing conditions similar to a normal field, without free oxygen. The results indicated significant differences in the volume of pore spaces in the roots among cultivars and along the root segment in each cultivar, indicating that under flooded conditions the genetic potential of the plant is crucial in induction of cell death and formation of aerenchyma in response to lack of O2. In addition, the amount of Fe accumulated on the root surface was different among genotypes and along the roots. Thus, we concluded that the rice genotypes exhibit different responses for aerenchyma formation, oxygen release by the roots and iron plaque formation, and that there is a direct relationship between porosity and the amount of iron oxidized on the root surface.
Resumo:
Water degradation is strongly related to agricultural activity. The aim of this study was to evaluate the influence of land use and some environmental components on surface water quality in the Campestre catchment, located in Colombo, state of Parana, Brazil. Physical and chemical attributes were analyzed (total nitrogen, ammonium, nitrate, total phosphorus, electrical conductivity, pH, temperature, turbidity, total solids, biological oxygen demand, chemical oxygen demand and dissolved oxygen). Monthly samples of the river water were taken over one year at eight monitoring sites, distributed over three sub-basins. Overall, water quality was worse in the sub-basin with a higher percentage of agriculture, and was also affected by a lower percentage of native forest and permanent preservation area, and a larger drainage area. Water quality was also negatively affected by the presence of agriculture in the riparian zone. In the summer season, probably due to higher rainfall and intensive soil use, a higher concentration of total nitrogen and particulate nitrogen was observed, as well as higher electrical conductivity, pH and turbidity. All attributes, except for total phosphorus, were in compliance with Brazilian Conama Resolution Nº 357/2005 for freshwater class 1. However, it should be noted that these results referred to the base flow and did not represent a discharge condition since most of the water samples were not collected at or near the rainfall event.
Resumo:
Molecular probe techniques have made important contributions to the determination of microstructure of surfactant assemblies such as size, stability, micropolarity and conformation. Conductivity and surface tension were used to determine the critical aggregation concentration (cac) of polymer-surfactant complexes and the critical micellar concentration (cmc) of aqueous micellar aggregates. The results are compared with those of fluorescent techniques. Several surfactant systems were examined, 1-butanol-sodium dodecylsulfate (SDS) mixtures, solutions containing poly(ethylene oxide)-SDS, poly(vinylpyrrolidone)-SDS and poly(acrylic acid)-alkyltrimethylammonium bromide complexes. We found differences between the cac and cmc values obtained by conductivity or surface tension and those obtained by techniques which use hydrophobic probe.
Resumo:
Herein, the immobilization of some Schiff base-copper(II) complexes in smectite clays is described as a strategy for the heterogenization of homogeneous catalysts. The obtained materials were characterized by spectroscopic techniques, mostly UV/Vis, EPR, XANES and luminescence spectroscopy. SWy-2 and synthetic Laponite clays were used for the immobilization of two different complexes that have previously shown catalytic activity in the dismutation of superoxide radicals, and disproportionation of hydrogen peroxide. The obtained results indicated the occurrence of an intriguing intramolecular redox process involving copper and the imine ligand at the surface of the clays. These studies are supported by computational calculations.
Resumo:
This work studies the effect of NTMP (nitrilotris(methylenephosphonic acid)) on the adsorption of Cu(II), Zn(II), and Cd(II) onto boehmite in the pH range 5-9.5. The data were analyzed using the 2-pK constant capacitance model (CCM) assuming ternary surface complex formation. Under stoichiometric conditions, NTMP is more effective for removing Cu(II) than Zn(II) from solution and the contribution of ternary surface complexes are important to model the adsorption of both metals. Under nonstoichiometric conditions and high surface loading with a Me(II)/NTMP ratio of 1:5, Cu(II) and Zn(II) adsorption is significantly suppressed. In the case of Cd(II) the free metal adsorption is the most dominant species.
Lanthanum based high surface area perovskite-type oxide and application in CO and propane combustion
Resumo:
The perovskite-type oxides using transition metals present a promising potential as catalysts in total oxidation reaction. The present work investigates the effect of synthesis by oxidant co-precipitation on the catalytic activity of perovskite-type oxides LaBO3 (B= Co, Ni, Mn) in total oxidation of propane and CO. The perovskite-type oxides were characterized by means of X-ray diffraction, nitrogen adsorption (BET method), thermo gravimetric and differential thermal analysis (ATG-DTA) and X-ray photoelectron spectroscopy (XPS). Through a method involving the oxidant co-precipitation it's possible to obtain catalysts with different BET surface areas, of 33-44 m²/g, according the salts of metal used. The characterization results proved that catalysts have a perovskite phase as well as lanthanum oxide, except LaMnO3, that presents a cationic vacancies and generation for known oxygen excess. The results of catalytic test showed that all oxides have a specific catalytic activity for total oxidation of CO and propane even though the temperatures for total conversion change for each transition metal and substance to be oxidized.
Resumo:
The aim of this study was to identify, by multivariate statistical technique, the physic, chemical and biological variables that best characterize the quality of surface waters in two small rural catchments with different land uses (eucalyptus silviculture (SC) vs. pasture and extensive livestock (LC)) located in Rosário do Sul, RS - Brazil. Monitoring was conducted during the months of August 2011 to August 2012 and the following parameters were analyzed: Ca2+, Mg2+, K+, SO42-, Cl-, pH, electrical conductivity, turbidity, alkalinity, suspended and dissolved solids, biochemical oxygen demand , total coliforms, Escherichia coli and temperature, flow and rainfall. Through the use of FA/PCA, it was found that the model best fit to express water quality of in LC that was composed of five factors which account for 83.5% of the total variance, while for SC, four factors accounted for 85.12% of the variance. In LC, the five main factors were, respectively, soluble salts, diffuse pollution, solid, and both anthropogenic and organic factors. In SC, the four factors were namely: soluble salts, mineral, nutritional and diffuse pollution factors. The results of this study showed that by replacing the traditional soil usage (pasture and livestock) with planted forest, diffuse pollution was attenuated but, however, it did not result in major changes in the physical-chemical and biological characteristics of the water. Another point to note is that factorial analysis did not result in a large reduction in the number of variables, once the best model fit occurred with the addition of 15 of 18 analyzed variables (LC) and 17 of 18 analyzed variables (SC).
Resumo:
Lipopolysaccharide (LPS) activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R) and smooth (S) forms signal through Toll-like receptor 4 (TLR4), but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS) and nitric oxide (NO) generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.