6 resultados para subsoiling
em Scielo Saúde Pública - SP
Resumo:
Soil management practices which increase the root depth penetration of citrus are important to the longevity and yield maintenance of this plant, especially in regions where long periods of drought are common, even in soil conventionally subsoiled to a depth of 30-40 cm, when the orchard was first established. The objective of this study was to evaluate the efficiency of subsoiling on the physical and hydric properties of a Typical Hapludult and fruit yield in a 14-year-old citrus orchard located in Piracicaba, SP. The treatments consisted of: no-subsoiling (with no tilling of the soil after the orchard was planted); subsoiling on one side of the plant lines (SUB. 1); and subsoiling on both sides of the plant lines (SUB. 2). The subsoiling treatments were carried out 1.5 m from the plant lines and to a depth of 0.8 m. Soil samples were taken 120 days after this operation, at four depths, in order to determine physical and hydric properties. Fruit yield was evaluated 150 days after subsoiling. Subsoiling between the plant lines of an old established citrus orchard alters the physical and hydric properties of the soil, which is reflected in increased soil macroporosity and unsaturated hydraulic conductivity, and reduced soil bulk density, critical degree-of-compactness and penetration resistance. The improvements in the physical and hydric properties of the soil were related to an increase in fruit number and orchard yield.
Resumo:
ABSTRACT The concept of soil physical quality (SPQ) is currently under discussion, and an agreement about which soil physical properties should be included in the SPQ characterization has not been reached. The objectives of this study were to evaluate the ability of SPQ indicators based on static and dynamic soil properties to assess the effects of two loosening treatments (chisel plowing to 0.20 m [ChT] and subsoiling to 0.35 m [DL]) on a soil under NT and to compare the performance of static- and dynamic-based SPQ indicators to define soil proper soil conditions for soybean yield. Soil sampling and field determinations were carried out after crop harvest. Soil water retention curve was determined using a tension table, and field infiltration was measured using a tension disc infiltrometer. Most dynamic SPQ indicators (field saturated hydraulic conductivity, K0, effective macroporosity, εma, total connectivity and macroporosity indexes [CwTP and Cwmac]) were affected by the studied treatments, and were greater for DL compared to NT and ChT (K0 values were 2.17, 2.55, and 4.37 cm h-1 for NT, ChT, and DL, respectively). However, static SPQ indicators (calculated from the water retention curve) were not capable of distinguishing effects among treatments. Crop yield was significantly lower for the DL treatment (NT: 2,400 kg ha-1; ChT: 2,358 kg ha-1; and DL: 2,105 kg ha1), in agreement with significantly higher values of the dynamic SPQ indicators, K0, εma, CwTP, and Cwmac, in this treatment. The results support the idea that SPQ indicators based on static properties are not capable of distinguishing tillage effects and predicting crop yield, whereas dynamic SPQ indicators are useful for distinguishing tillage effects and can explain differences in crop yield when used together with information on weather conditions. However, future studies, monitoring years with different weather conditions, would be useful for increasing knowledge on this topic.
The effect of plantation silviculture on soil organic matter and particle-size fractions in Amazonia
Resumo:
Eucalyptus grandis and other clonal plantations cover about 3.5 million ha in Brazil. The impacts of intensively-managed short-rotation forestry on soil aggregate structure and Carbon (C) dynamics are largely undocumented in tropical ecosystems. Long-term sustainability of these systems is probably in part linked to maintenance of soil organic matter and good soil structure and aggregation, especially in areas with low-fertility soils. This study investigated soil aggregate dynamics on a clay soil and a sandy soil, each with a Eucalyptus plantation and an adjacent primary forest. Silvicultural management did not reduce total C stocks, and did not change soil bulk density. Aggregates of the managed soils did not decrease in mass as hypothesized, which indicates that soil cultivation in 6 year cycles did not cause large decreases in soil aggregation in either soil texture. Silt, clay, and C of the sandy plantation soil shifted to greater aggregate protection, which may represent a decrease in C availability. The organic matter in the clay plantation soil increased in the fractions considered less protected while this shift from C to structural forms considered more protected was not observed.
Resumo:
The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.
Resumo:
The objective of this work was to evaluate the agroindustrial production of sugarcane (millable stalks and sucrose yield) after successive nitrogen fertilizations of plant cane and ratoons in a reduced tillage system. The experiment was carried out at Jaboticabal, SP, Brazil, on a Rhodic Eutrustox soil, during four consecutive crop cycles (March 2005 to July 2009). Plant cane treatments consisted of N-urea levels (control, 40, 80, and 120 kg ha-1 N + 120 kg ha-1 P2O5 and K2O in furrow application). In the first and second ratoons, the plant cane plots were subdivided in N-ammonium nitrate treatments (control, 50, 100, and 150 kg ha-1 N + 150 kg ha-1 K2O as top dressing over rows). In the third ratoon, N fertilization was leveled to 100 kg ha-1 in all plots, including controls, to detect residual effects of previous fertilizations on the last crop's cycle. Sugarcane ratoon was mechanically harvested. A weighing truck was used to evaluate stalk yield (TCH), and samples were collected in the field for analysis of sugar content (TSH). Increasing N doses and meteorological conditions promote significant responses in TCH and TSH in cane plant and ratoons, in the average and accumulated yield of the consecutive crop cycles.
Resumo:
The objective of this study was to evaluate the use of subsoiling, gypsum and organic matter associated with the cultivation of cotton, sunflower and cowpea in crop rotation, seeking the reclamation and use of a saline-sodic soil. The treatments were arranged in a randomized block design in split plots with four replications, during two crop cycles (2009/2010 and 2010/2011). The plots were formed by the treatments: T1. Subsoiling (S); T2. S + 20 Mg ha-1 of gypsum; T3. S + 40 Mg ha-1 of organic matter; T4. S + 10 Mg ha-1 of gypsum + 20 Mg ha-1 of organic matter; T5. S + 20 Mg ha-1 of gypsum + 40 Mg ha-1 of organic matter and the sub-plots consisted of the cotton-cowpea (C/CP) and sunflower-cowpea (S/CP) crop rotation. The use of gypsum and organic matter contributed to decrease the soil salinity and sodicity. Cotton was not affected by the treatments, while the sunflower crop was favored by the application of amendments only in the second production cycle. Higher yields of cowpea in T5 treatment, during the 2009/2010 cycle, are indicative that higher doses of gypsum and organic matter applied in this treatment accelerate the reclamation process. For other treatments with amendment application there was a beneficial effect for this crop only in the second cycle, when the values of productivity were similar to T5.