14 resultados para structure factor
em Scielo Saúde Pública - SP
Resumo:
Leaf-litter amount as a factor in the structure of a ponerine ants community (Hymenoptera, Formicidae, Ponerinae) in an eastern Amazonian rainforest, Brazil. Leaf-litter may be an important factor in structuring ponerine ant communities (Hymenoptera, Formicidae, Ponerinae) in tropical rainforests. We specifically examined how leaf-litter affects the structure of a ponerine ant community in primary Amazonian rainforest sites at the Ferreira Penna Scientific Station, Pará, Brazil. A total of 53 species belonging to eight genera of three ponerine tribes were collected with mini-Winkler extractors. The amount of leaf-litter positively affected the abundance and richness of the ponerine ant community, and also influenced species composition. Nearby samples often had low species similarity, especially when adjacent samples differed in the amount of leaf-litter. Leaf-litter availability in Amazonian primary forests is a key factor for distribution of ground-dwelling ponerine species, even at small scales.
Resumo:
The objective of the present study was to evaluate the factor structure of Bech's version of the Brief Psychiatric Rating Scale (BPRS), translated into Portuguese. The BPRS was administered to a heterogeneous group of psychiatric inpatients (N = 98) and outpatients (N = 62) in a University Hospital. Each patient was evaluated from one to eight times. The interval between consecutive interviews was one week for the inpatients and one month for the outpatients. The results were submitted to factorial analysis. The internal consistency of the total scale and of each factor was also estimated. Factorial analysis followed by normalized orthogonal rotation (Varimax) yielded four factors: Withdrawal-Retardation, Thinking Disorder, Anxious-Depression and Activation. Internal consistency measured by Cronbach's alpha coefficient ranged from 0.766 to 0.879. The data show that the factor structure of the present instrument is similar to that of the American version of the BPRS which contains 18 items, except for the absence of the fifth factor of the latter scale, Hostile-Suspiciousness.
Resumo:
The mannose-resistant hemagglutinating factor (HAF) was extracted and purified from a diffuse adherent Escherichia coli (DAEC) strain belonging to the classic enteropathogenic E. coli (EPEC) serotype (0128). The molecular weight of HAF was estimated to be 18 KDa by SDS-PAGE and 66 KDa by Sephadex G100, suggesting that the native form of HAF consists of 3-4 monomeric HAF. Gold immunolabeling with specific HAF antiserum revealed that the HAF is not a rigid structure like fimbriae on the bacterial surface. The immunofluorescence test using purified HAF on HeLa cells, in addition to the fact that the HAF is distributed among serotypes of EPEC, suggests that HAF is a possible adhesive factor of DAEC strains
Resumo:
The chemical structure of lipoprotein (a) is similar to that of LDL, from which it differs due to the presence of apolipoprotein (a) bound to apo B100 via one disulfide bridge. Lipoprotein (a) is synthesized in the liver and its plasma concentration, which can be determined by use of monoclonal antibody-based methods, ranges from < 1 mg to > 1,000 mg/dL. Lipoprotein (a) levels over 20-30 mg/dL are associated with a two-fold risk of developing coronary artery disease. Usually, black subjects have higher lipoprotein (a) levels that, differently from Caucasians and Orientals, are not related to coronary artery disease. However, the risk of black subjects must be considered. Sex and age have little influence on lipoprotein (a) levels. Lipoprotein (a) homology with plasminogen might lead to interference with the fibrinolytic cascade, accounting for an atherogenic mechanism of that lipoprotein. Nevertheless, direct deposition of lipoprotein (a) on arterial wall is also a possible mechanism, lipoprotein (a) being more prone to oxidation than LDL. Most prospective studies have confirmed lipoprotein (a) as a predisposing factor to atherosclerosis. Statin treatment does not lower lipoprotein (a) levels, differently from niacin and ezetimibe, which tend to reduce lipoprotein (a), although confirmation of ezetimibe effects is pending. The reduction in lipoprotein (a) concentrations has not been demonstrated to reduce the risk for coronary artery disease. Whenever higher lipoprotein (a) concentrations are found, and in the absence of more effective and well-tolerated drugs, a more strict and vigorous control of the other coronary artery disease risk factors should be sought.
Resumo:
Receptors for interleukin 2 (IL-2) esit in at least three forms which differ in their subunit compositio, their affinity for ligand and their ability to mediate a cellular reponse. Type I receptors occur following cellular acitivation and consist of the 55,000 m. w. glycoprotein Tac. These receptors bind IL-2 with a low affinity, do not internalize ligand and have not been definitively associated with any response. Type II receptors, on the other hand, conssit of one or more glycoproteins of 70,000 m. w. which have been termed "beta ([beta]) chains." They bind IL-2 with an intermediate affinity and rapidly internalize the ligand. [Beta] proteins mediate many cellular IL-2-dependent reponses, including the short-term activation of natural killer cells and the induction of Tac protein expression. Type III receptors consist of a ternary complex of the Tac protein, the [beta] chain(s) and IL-2. They are characterized by a paricularly high affinity for ligand association. Type III receptors also internalize ligand and mediate IL-2-dependent responses at low factor concentrations. The identification of two independent IL-2-binding molecules, Tac and [beta], thus provides the elusive molecular explanation for the differences in IL-2 receptor affinity and suggests the potential for selective therapeutic manipulation of IL-2 reponses.
Resumo:
Merozoite surface protein-1 (MSP-1, also referred to as P195, PMMSA or MSA 1) is one of the most studied of all malaria proteins. The proteins. The protein is found in all malaria species investigated and structural studies on the gene indicate that parts of the molecule are well-conserved. Studies on Plasmodium falciparum have shown that the protein is in a processed form on the merozoite surface, a result of proteolytic cleavage of the large percursor molecule. Recent studies have identified some of these cleavage sites. During invasion of the new red cell most of the MSP1 molecule is shed from the parasite surface except for a small C-terminal fragment which can be detected in ring stages. Analysis of the structure of this fragment suggests that it contains two growth factor-like domains that may have a functional role.
Resumo:
The PyAG1 gene, identified by the screening of a Plasmodium yoelii genomic DNA library with a rhoptry-specific Mab, encodes a protein with a zinc finger structure immediately followed by the consensus sequence of the Arf GAP catalytic site. The serum of mice immunized with the recombinant protein recognized specifically the rhoptries of the late infected erythrocytic stages. Blast analysis using the Genbank database gave the highest scores with four proteins presenting an Arf1 GAP activity. If presenting also this activity, the PyAG1 protein could be involved in the regulation of the secreted protein vesicular transport and, consequently, in the rhoptry biogenesis.
Resumo:
Edge effects are considered a key factor in regulating the structure of plant communities in different ecosystems. However, regardless to few studies, edge influence does not seem to be decisive in semiarid regions such as the Brazilian tropical dry forest known as Caatinga but this issue remains inconclusive. The present study tests the null hypothesis that the plant community of shrubs and trees does not change in its structure due to edge effects. Twenty-four plots (20 x 20 m) were set up in a fragment of Caatinga, in which 12 plots were in the forest edges and 12 plots were inside the fragment. Tree richness, abundance and species composition did not differ between edge and interior plots. The results of this study are in agreement with the pattern previously found for semiarid environments and contrasts with previous results obtained in different environments such as Rainforests, Savanna and Forest of Araucaria, which indicate abrupt differences between the border and interior of the plant communities in these ecosystems, and suggest that the community of woody plants of the Caatinga is not ecologically affected by the presence of edges.
Resumo:
The present review describes recent research on the regulation by glutamate and Ca2+ of the phosphorylation state of the intermediate filament protein of the astrocytic cytoskeleton, glial fibrillary acidic protein (GFAP), in immature hippocampal slices. The results of this research are discussed against a background of modern knowledge of the functional importance of astrocytes in the brain and of the structure and dynamic properties of intermediate filament proteins. Astrocytes are now recognized as partners with neurons in many aspects of brain function with important roles in neural plasticity. Site-specific phosphorylation of intermediate filament proteins, including GFAP, has been shown to regulate the dynamic equilibrium between the polymerized and depolymerized state of the filaments and to play a fundamental role in mitosis. Glutamate was found to increase the phosphorylation state of GFAP in hippocampal slices from rats in the post-natal age range of 12-16 days in a reaction that was dependent on external Ca2+. The lack of external Ca2+ in the absence of glutamate also increased GFAP phosphorylation to the same extent. These effects of glutamate and Ca2+ were absent in adult hippocampal slices, where the phosphorylation of GFAP was completely Ca2+-dependent. Studies using specific agonists of glutamate receptors showed that the glutamate response was mediated by a G protein-linked group II metabotropic glutamate receptor (mGluR). Since group II mGluRs do not act by liberating Ca2+ from internal stores, it is proposed that activation of the receptor by glutamate inhibits Ca2+ entry into the astrocytes and consequently down-regulates a Ca2+-dependent dephosphorylation cascade regulating the phosphorylation state of GFAP. The functional significance of these results may be related to the narrow developmental window when the glutamate response is present. In the rat brain this window corresponds to the period of massive synaptogenesis during which astrocytes are known to proliferate. Possibly, glutamate liberated from developing synapses during this period may signal an increase in the phosphorylation
Resumo:
Bone morphogenetic proteins (BMPs) are multi-functional growth factors belonging to the transforming growth factor ß superfamily. Family members are expressed during limb development, endochondral ossification, early fracture, and cartilage repair. The activity of BMPs was first identified in the 1960s but the proteins responsible for bone induction were unknown until the purification and cloning of human BMPs in the 1980s. To date, about 15 BMP family members have been identified and characterized. The signal triggered by BMPs is transduced through serine/threonine kinase receptors, type I and II subtypes. Three type I receptors have been shown to bind BMP ligands, namely: type IA and IB BMP receptors and type IA activin receptors. BMPs seem to be involved in the regulation of cell proliferation, survival, differentiation and apoptosis, but their hallmark is their ability to induce bone, cartilage, ligament, and tendon formation at both heterotopic and orthotopic sites. This suggests that, in the future, they may play a major role in the treatment of bone diseases. Several animal studies have illustrated the potential of BMPs to enhance spinal fusion, repair critical-size defects, accelerate union, and heal articular cartilage lesions. Difficulties in producing and purifying BMPs from bone tissue have prompted the attempts made by several laboratories, including ours, to express these proteins in the recombinant form in heterologous systems. This review focuses on BMP structure, molecular mechanisms of action and significance and potential applications in medical, dental and veterinary practice for the treatment of cartilage and bone-related diseases.
Resumo:
Premenstrual syndrome and premenstrual dysphoric disorder (PMDD) seem to form a severity continuum with no clear-cut boundary. However, since the American Psychiatric Association proposed the research criteria for PMDD in 1994, there has been no agreement about the symptomatic constellation that constitutes this syndrome. The objective of the present study was to establish the core latent structure of PMDD symptoms in a non-clinical sample. Data concerning PMDD symptoms were obtained from 632 regularly menstruating college students (mean age 24.4 years, SD 5.9, range 17 to 49). For the first random half (N = 316), we performed principal component analysis (PCA) and for the remaining half (N = 316), we tested three theory-derived competing models of PMDD by confirmatory factor analysis. PCA allowed us to extract two correlated factors, i.e., dysphoric-somatic and behavioral-impairment factors. The two-dimensional latent model derived from PCA showed the best overall fit among three models tested by confirmatory factor analysis (c²53 = 64.39, P = 0.13; goodness-of-fit indices = 0.96; adjusted goodness-of-fit indices = 0.95; root mean square residual = 0.05; root mean square error of approximation = 0.03; 90%CI = 0.00 to 0.05; Akaike's information criterion = -41.61). The items "out of control" and "physical symptoms" loaded conspicuously on the first factor and "interpersonal impairment" loaded higher on the second factor. The construct validity for PMDD was accounted for by two highly correlated dimensions. These results support the argument for focusing on the core psychopathological dimension of PMDD in future studies.
Resumo:
The anxiogenic and antinociceptive effects produced by glutamate N-methyl-D-aspartate receptor activation within the dorsal periaqueductal gray (dPAG) matter have been related to nitric oxide (NO) production, since injection of NO synthase (NOS) inhibitors reverses these effects. dPAG corticotropin-releasing factor receptor (CRFr) activation also induces anxiety-like behavior and antinociception, which, in turn, are selectively blocked by local infusion of the CRF type 1 receptor (CRFr1) antagonist, NBI 27914 [5-chloro-4-(N-(cyclopropyl)methyl-N-propylamino)-2-methyl-6-(2,4,6-trichlorophenyl)aminopyridine]. Here, we determined whether i) the blockade of the dPAG by CRFr1 attenuates the anxiogenic/antinociceptive effects induced by local infusion of the NO donor, NOC-9 [6-(2-hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine], and ii) the anxiogenic/antinociceptive effects induced by intra-dPAG CRF are prevented by local infusion of Nω-propyl-L-arginine (NPLA), a neuronal NOS inhibitor, in mice. Male Swiss mice (12 weeks old, 25-35 g, N = 8-14/group) were stereotaxically implanted with a 7-mm cannula aimed at the dPAG. Intra-dPAG NOC-9 (75 nmol) produced defensive-like behavior (jumping and running) and antinociception (assessed by the formalin test). Both effects were reversed by prior local infusion of NBI 27914 (2 nmol). Conversely, intra-dPAG NPLA (0.4 nmol) did not modify the anxiogenic/antinociceptive effects of CRF (150 pmol). These results suggest that CRFr1 plays an important role in the defensive behavior and antinociception produced by NO within the dPAG. In contrast, the anxiogenic and antinociceptive effects produced by intra-dPAG CRF are not related to NO synthesis in this limbic midbrain structure.
Resumo:
Changes in plasma von Willebrand factor concentration (VWF:Ag) and ADAMTS-13 activity (the metalloprotease that cleaves VWF physiologically) have been reported in several cardiovascular disorders with prognostic implications. We therefore determined the level of these proteins in the plasma of children with cyanotic congenital heart disease (CCHD) undergoing surgical treatment. Forty-eight children were enrolled (age 0.83 to 7.58 years). Measurements were performed at baseline and 48 h after surgery. ELISA, collagen-binding assays and Western blotting were used to estimate antigenic and biological activities, and proteolysis of VWF multimers. Preoperatively, VWF:Ag and ADAMTS-13 activity were decreased (65 and 71% of normal levels considered as 113 (105-129) U/dL and 91 ± 24% respectively, P < 0.003) and correlated (r = 0.39, P = 0.0064). High molecular weight VWF multimers were not related, suggesting an interaction of VWF with cell membranes, followed by proteolytic cleavage. A low preoperative ADAMTS-13 activity, a longer activated partial thromboplastin time and the need for cardiopulmonary bypass correlated with postoperative bleeding (P < 0.05). Postoperatively, ADAMTS-13 activity increased but less extensively than VWF:Ag (respectively, 2.23 and 2.83 times baseline, P < 0.0001), resulting in an increased VWF:Ag/ADAMTS-13 activity ratio (1.20 to 1.54, respectively, pre- and postoperative median values, P = 0.0029). ADAMTS-13 consumption was further confirmed by decreased ADAMTS-13 antigenic concentration (0.91 ± 0.30 to 0.70 ± 0.25 µg/mL, P < 0.0001) and persistent proteolysis of VWF multimers. We conclude that, in pediatric CCHD, changes in circulating ADAMTS-13 suggest enzyme consumption, associated with abnormal structure and function of VWF.
Resumo:
We aimed to investigate the effects of an anti-tumor necrosis factor-α antibody (ATNF) on cartilage and subchondral bone in a rat model of osteoarthritis. Twenty-four rats were randomly divided into three groups: sham-operated group (n=8); anterior cruciate ligament transection (ACLT)+normal saline (NS) group (n=8); and ACLT+ATNF group (n=8). The rats in the ACLT+ATNF group received subcutaneous injections of ATNF (20 μg/kg) for 12 weeks, while those in the ACLT+NS group received NS at the same dose for 12 weeks. All rats were euthanized at 12 weeks after surgery and specimens from the affected knees were harvested. Hematoxylin and eosin staining, Masson's trichrome staining, and Mankin score assessment were carried out to evaluate the cartilage status and cartilage matrix degradation. Matrix metalloproteinase (MMP)-13 immunohistochemistry was performed to assess the cartilage molecular metabolism. Bone histomorphometry was used to observe the subchondral trabecular microstructure. Compared with the rats in the ACLT+NS group, histological and Mankin score analyses showed that ATNF treatment reduced the severity of the cartilage lesions and led to a lower Mankin score. Immunohistochemical and histomorphometric analyses revealed that ATNF treatment reduced the ACLT-induced destruction of the subchondral trabecular microstructure, and decreased MMP-13 expression. ATNF treatment may delay degradation of the extracellular matrix via a decrease in MMP-13 expression. ATNF treatment probably protects articular cartilage by improving the structure of the subchondral bone and reducing the degradation of the cartilage matrix.