18 resultados para spatial data analysis
em Scielo Saúde Pública - SP
Resumo:
The aim of this work is to establish a relationship between schistosomiasis prevalence and social-environmental variables, in the state of Minas Gerais, Brazil, through multiple linear regression. The final regression model was established, after a variables selection phase, with a set of spatial variables which contains the summer minimum temperature, human development index, and vegetation type variables. Based on this model, a schistosomiasis risk map was built for Minas Gerais.
Resumo:
The structural modeling of spatial dependence, using a geostatistical approach, is an indispensable tool to determine parameters that define this structure, applied on interpolation of values at unsampled points by kriging techniques. However, the estimation of parameters can be greatly affected by the presence of atypical observations in sampled data. The purpose of this study was to use diagnostic techniques in Gaussian spatial linear models in geostatistics to evaluate the sensitivity of maximum likelihood and restrict maximum likelihood estimators to small perturbations in these data. For this purpose, studies with simulated and experimental data were conducted. Results with simulated data showed that the diagnostic techniques were efficient to identify the perturbation in data. The results with real data indicated that atypical values among the sampled data may have a strong influence on thematic maps, thus changing the spatial dependence structure. The application of diagnostic techniques should be part of any geostatistical analysis, to ensure a better quality of the information from thematic maps.
Resumo:
The objective of this study was to evaluate the efficiency of spatial statistical analysis in the selection of genotypes in a plant breeding program and, particularly, to demonstrate the benefits of the approach when experimental observations are not spatially independent. The basic material of this study was a yield trial of soybean lines, with five check varieties (of fixed effect) and 110 test lines (of random effects), in an augmented block design. The spatial analysis used a random field linear model (RFML), with a covariance function estimated from the residuals of the analysis considering independent errors. Results showed a residual autocorrelation of significant magnitude and extension (range), which allowed a better discrimination among genotypes (increase of the power of statistical tests, reduction in the standard errors of estimates and predictors, and a greater amplitude of predictor values) when the spatial analysis was applied. Furthermore, the spatial analysis led to a different ranking of the genetic materials, in comparison with the non-spatial analysis, and a selection less influenced by local variation effects was obtained.
Resumo:
AbstractObjective:To evaluate the association between Hashimoto's thyroiditis (HT) and papillary thyroid carcinoma (PTC).Materials and Methods:The patients were evaluated by ultrasonography-guided fine needle aspiration cytology. Typical cytopathological aspects and/or classical histopathological findings were taken into consideration in the diagnosis of HT, and only histopathological results were considered in the diagnosis of PTC.Results:Among 1,049 patients with multi- or uninodular goiter (903 women and 146 men), 173 (16.5%) had cytopathological features of thyroiditis. Thirty-three (67.4%) out of the 49 operated patients had PTC, 9 (27.3%) of them with histopathological features of HT. Five (31.3%) out of the 16 patients with non-malignant disease also had HT. In the groups with HT, PTC, and PCT+HT, the female prevalence rate was 100%, 91.6%, and 77.8%, respectively. Mean age was 41.5, 43.3, and 48.5 years, respectively. No association was observed between the two diseases in the present study where HT occurred in 31.1% of the benign cases and in 27.3% of malignant cases (p = 0.8).Conclusion:In spite of the absence of association between HT and PCT, the possibility of malignancy in HT should always be considered because of the coexistence of the two diseases already reported in the literature.
Resumo:
GLUT4 protein expression in white adipose tissue (WAT) and skeletal muscle (SM) was investigated in 2-month-old, 12-month-old spontaneously obese or 12-month-old calorie-restricted lean Wistar rats, by considering different parameters of analysis, such as tissue and body weight, and total protein yield of the tissue. In WAT, a ~70% decrease was observed in plasma membrane and microsomal GLUT4 protein, expressed as µg protein or g tissue, in both 12-month-old obese and 12-month-old lean rats compared to 2-month-old rats. However, when plasma membrane and microsomal GLUT4 tissue contents were expressed as g body weight, they were the same. In SM, GLUT4 protein content, expressed as µg protein, was similar in 2-month-old and 12-month-old obese rats, whereas it was reduced in 12-month-old obese rats, when expressed as g tissue or g body weight, which may play an important role in insulin resistance. Weight loss did not change the SM GLUT4 content. These results show that altered insulin sensitivity is accompanied by modulation of GLUT4 protein expression. However, the true role of WAT and SM GLUT4 contents in whole-body or tissue insulin sensitivity should be determined considering not only GLUT4 protein expression, but also the strong morphostructural changes in these tissues, which require different types of data analysis.
Resumo:
This study sought to evaluate the acceptance of "dulce de leche" with coffee and whey. The results were analyzed through response surface, ANOVA, test of averages, histograms, and preference map correlating the global impression data with results of physical, physiochemical and sensory analysis. The response surface methodology, by itself, was not enough to find the best formulation. For ANOVA, test of averages, and preference map it was observed that the consumers' favorite "dulce de leche" were those of formulation 1 (10% whey and 1% coffee) and 2 (30% whey and 1% coffee), followed by formulation 9 (20% whey and 1.25% coffee). The acceptance of samples 1 and 2 was influenced by the higher acceptability in relation to the flavor and for presenting higher pH, L*, and b* values. It was observed that samples 1 and 2 presented higher purchase approval score and higher percentages of responses for the 'ideal' category in terms of sweetness and coffee flavor. It was found that consumers preferred the samples with low concentrations of coffee independent of the concentration of whey thus enabling the use of whey and coffee in the manufacture of dulce de leche, obtaining a new product.
Resumo:
The geographic information system approach has permitted integration between demographic, socio-economic and environmental data, providing correlation between information from several data banks. In the current work, occurrence of human and canine visceral leishmaniases and insect vectors (Lutzomyia longipalpis) as well as biogeographic information related to 9 areas that comprise the city of Belo Horizonte, Brazil, between April 2001 and March 2002 were correlated and georeferenced. By using this technique it was possible to define concentration loci of canine leishmaniasis in the following regions: East; Northeast; Northwest; West; and Venda Nova. However, as for human leishmaniasis, it was not possible to perform the same analysis. Data analysis has also shown that 84.2% of the human leishmaniasis cases were related with canine leishmaniasis cases. Concerning biogeographic (altitude, area of vegetation influence, hydrographic, and areas of poverty) analysis, only altitude showed to influence emergence of leishmaniasis cases. A number of 4673 canine leishmaniasis cases and 64 human leishmaniasis cases were georeferenced, of which 67.5 and 71.9%, respectively, were living between 780 and 880 m above the sea level. At these same altitudes, a large number of phlebotomine sand flies were collected. Therefore, we suggest control measures for leishmaniasis in the city of Belo Horizonte, giving priority to canine leishmaniasis foci and regions at altitudes between 780 and 880 m.
Resumo:
In the current study, we performed a soybean production spatial distribution analysis in Paraná State. Seven crop-year data, from 2003-04 to 2009-10, obtained from the Paraná Department of Agriculture and Supply (SEAB) were used to develop a Boxmap for each crop-year, show soybean production throughout this time interval. Moran's index was used to measure spatial autocorrelation among municipalities at an aggregate level, while LISA index local correlation. For each index, different contiguity matrix and order were used and there was a significance level study. As a result, we have showed spatial relationship among cities regarding the production, which allowed the indication of high and low production clusters. Finally, identifying main soybean-producing cities, what may provide supply chain members with information to strengthen the crop production in Paraná.
Resumo:
ABSTRACT OBJECTIVE To describe the spatial patterns of leprosy in the Brazilian state of Tocantins. METHODS This study was based on morbidity data obtained from the Sistema de Informações de Agravos de Notificação (SINAN – Brazilian Notifiable Diseases Information System), of the Ministry of Health. All new leprosy cases in individuals residing in the state of Tocantins, between 2001 and 2012, were included. In addition to the description of general disease indicators, a descriptive spatial analysis, empirical Bayesian analysis and spatial dependence analysis were performed by means of global and local Moran’s indexes. RESULTS A total of 14,542 new cases were recorded during the period under study. Based on the annual case detection rate, 77.0% of the municipalities were classified as hyperendemic (> 40 cases/100,000 inhabitants). Regarding the annual case detection rate in < 15 years-olds, 65.4% of the municipalities were hyperendemic (10.0 to 19.9 cases/100,000 inhabitants); 26.6% had a detection rate of grade 2 disability cases between 5.0 and 9.9 cases/100,000 inhabitants. There was a geographical overlap of clusters of municipalities with high detection rates in hyperendemic areas. Clusters with high disease risk (global Moran’s index: 0.51; p < 0.001), ongoing transmission (0.47; p < 0.001) and late diagnosis (0.44; p < 0.001) were identified mainly in the central-north and southwestern regions of Tocantins. CONCLUSIONS We identified high-risk clusters for transmission and late diagnosis of leprosy in the Brazilian state of Tocantins. Surveillance and control measures should be prioritized in these high-risk municipalities.
Resumo:
Polistine wasps are important in Neotropical ecosystems due to their ubiquity and diversity. Inventories have not adequately considered spatial attributes of collected specimens. Spatial data on biodiversity are important for study and mitigation of anthropogenic impacts over natural ecosystems and for protecting species. We described and analyzed local-scale spatial patterns of collecting records of wasp species, as well as spatial variation of diversity descriptors in a 2500-hectare area of an Amazon forest in Brazil. Rare species comprised the largest fraction of the fauna. Close range spatial effects were detected for most of the more common species, with clustering of presence-data at short distances. Larger spatial lag effects could also be identified in some species, constituting probably cases of exogenous autocorrelation and candidates for explanations based on environmental factors. In a few cases, significant or near significant correlations were found between five species (of Agelaia, Angiopolybia, and Mischocyttarus) and three studied environmental variables: distance to nearest stream, terrain altitude, and the type of forest canopy. However, association between these factors and biodiversity variables were generally low. When used as predictors of polistine richness in a linear multiple regression, only the coefficient for the forest canopy variable resulted significant. Some level of prediction of wasp diversity variables can be attained based on environmental variables, especially vegetation structure. Large-scale landscape and regional studies should be scheduled to address this issue.
Resumo:
In general, laboratory activities are costly in terms of time, space, and money. As such, the ability to provide realistically simulated laboratory data that enables students to practice data analysis techniques as a complementary activity would be expected to reduce these costs while opening up very interesting possibilities. In the present work, a novel methodology is presented for design of analytical chemistry instrumental analysis exercises that can be automatically personalized for each student and the results evaluated immediately. The proposed system provides each student with a different set of experimental data generated randomly while satisfying a set of constraints, rather than using data obtained from actual laboratory work. This allows the instructor to provide students with a set of practical problems to complement their regular laboratory work along with the corresponding feedback provided by the system's automatic evaluation process. To this end, the Goodle Grading Management System (GMS), an innovative web-based educational tool for automating the collection and assessment of practical exercises for engineering and scientific courses, was developed. The proposed methodology takes full advantage of the Goodle GMS fusion code architecture. The design of a particular exercise is provided ad hoc by the instructor and requires basic Matlab knowledge. The system has been employed with satisfactory results in several university courses. To demonstrate the automatic evaluation process, three exercises are presented in detail. The first exercise involves a linear regression analysis of data and the calculation of the quality parameters of an instrumental analysis method. The second and third exercises address two different comparison tests, a comparison test of the mean and a t-paired test.
Resumo:
Since the advent of mechanized farming and intensive use of agricultural machinery and implements on the properties, the soil began to receive greater load of machinery traffic, which can cause increased soil compaction. The aim of this study was to evaluate the spatial variability of soil mechanical resistance to penetration (RP) in the layers of 0.00-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.40m, using geostatistics in an area cultivated with mango in Haplic Vertisol of the northeastern semi-arid, with mobile unit equipped with electronic penetrometer. The RP data was collected in 56 points from an area of 3 ha, and random soil samples were collected to determine the soil moisture and texture. For RP data analysis we used descriptive statistics and geostatistics. The soil mechanical resistance to penetration presented increased variability, with adjustment of the spherical and exponential semivariograms in the layers. We found that 42% of the area in the layer of 0.10-0.20m showed RP values above 2.70 MPa. Maximum values of RP were found in the layer of 0.19-0.27m, predominantly in 56% of the area.
Resumo:
The morphometrics of the honey bee Apis mellifera L., 1758 has been widely studied mainly because this species has great ecological importance, high adaptation capacity, wide distribution and capacity to effectively adapt to different regions. The current study aimed to investigate the morphometric variations of wings and pollen baskets of honey bees Apis mellifera scutellata Lepeletier, 1836 from the five regions in Brazil. We used geometric morphometrics to identify the existence of patterns of variations of shape and size in Africanized honey bees in Brazil 16 years after the classic study with this species, allowing a temporal and spatial comparative analysis using new technological resources to assess morphometrical data. Samples were collected in 14 locations in Brazil, covering the five geographical regions of the country. The shape analysis and multivariate analyses of the wing allowed to observe that there is a geographical pattern among the population of Apis mellifera in Brazil. The geographical variations may be attributed to the large territorial extension of the country in addition to the differences between the bioregions.
Resumo:
The precise sampling of soil, biological or micro climatic attributes in tropical forests, which are characterized by a high diversity of species and complex spatial variability, is a difficult task. We found few basic studies to guide sampling procedures. The objective of this study was to define a sampling strategy and data analysis for some parameters frequently used in nutrient cycling studies, i. e., litter amount, total nutrient amounts in litter and its composition (Ca, Mg, Κ, Ν and P), and soil attributes at three depths (organic matter, Ρ content, cation exchange capacity and base saturation). A natural remnant forest in the West of São Paulo State (Brazil) was selected as study area and samples were collected in July, 1989. The total amount of litter and its total nutrient amounts had a high spatial independent variance. Conversely, the variance of litter composition was lower and the spatial dependency was peculiar to each nutrient. The sampling strategy for the estimation of litter amounts and the amount of nutrient in litter should be different than the sampling strategy for nutrient composition. For the estimation of litter amounts and the amount of nutrients in litter (related to quantity) a large number of randomly distributed determinations are needed. Otherwise, for the estimation of litter nutrient composition (related to quality) a smaller amount of spatially located samples should be analyzed. The determination of sampling for soil attributes differed according to the depth. Overall, surface samples (0-5 cm) showed high short distance spatial dependent variance, whereas, subsurface samples exhibited spatial dependency in longer distances. Short transects with sampling interval of 5-10 m are recommended for surface sampling. Subsurface samples must also be spatially located, but with transects or grids with longer distances between sampling points over the entire area. Composite soil samples would not provide a complete understanding of the relation between soil properties and surface dynamic processes or landscape aspects. Precise distribution of Ρ was difficult to estimate.
Resumo:
Brazilian soils have natural high chemical variability; thus, apparent electrical conductivity (ECa) can assist interpretation of crop yield variations. We aimed to select soil chemical properties with the best linear and spatial correlations to explain ECa variation in the soil using a Profiler sensor (EMP-400). The study was carried out in Sidrolândia, MS, Brazil. We analyzed the following variables: electrical conductivity - EC (2, 7, and 15 kHz), organic matter, available K, base saturation, and cation exchange capacity (CEC). Soil ECa was measured with the aid of an all-terrain vehicle, which crossed the entire area in strips spaced at 0.45 m. Soil samples were collected at the 0-20 cm depth with a total of 36 samples within about 70 ha. Classical descriptive analysis was applied to each property via SAS software, and GS+ for spatial dependence analysis. The equipment was able to simultaneously detect ECa at the different frequencies. It was also possible to establish site-specific management zones through analysis of correlation with chemical properties. We observed that CEC was the property that had the best correlation with ECa at 15 kHz.