168 resultados para soil mechanical resistance to penetration

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Estimation of soil load-bearing capacity from mathematical models that relate preconsolidation pressure (σp) to mechanical resistance to penetration (PR) and gravimetric soil water content (U) is important for defining strategies to prevent compaction of agricultural soils. Our objective was therefore to model the σp and compression index (CI) according to the PR (with an impact penetrometer in the field and a static penetrometer inserted at a constant rate in the laboratory) and U in a Rhodic Eutrudox. The experiment consisted of six treatments: no-tillage system (NT); NT with chiseling; and NT with additional compaction by combine traffic (passing 4, 8, 10, and 20 times). Soil bulk density, total porosity, PR (in field and laboratory measurements), U, σp, and CI values were determined in the 5.5-10.5 cm and 13.5-18.5 cm layers. Preconsolidation pressure (σp) and CI were modeled according to PR in different U. The σp increased and the CI decreased linearly with increases in the PR values. The correlations between σp and PR and PR and CI are influenced by U. From these correlations, the soil load-bearing capacity and compaction susceptibility can be estimated by PR readings evaluated in different U.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of mechanized farming and intensive use of agricultural machinery and implements on the properties, the soil began to receive greater load of machinery traffic, which can cause increased soil compaction. The aim of this study was to evaluate the spatial variability of soil mechanical resistance to penetration (RP) in the layers of 0.00-0.10, 0.10-0.20, 0.20-0.30 and 0.30-0.40m, using geostatistics in an area cultivated with mango in Haplic Vertisol of the northeastern semi-arid, with mobile unit equipped with electronic penetrometer. The RP data was collected in 56 points from an area of 3 ha, and random soil samples were collected to determine the soil moisture and texture. For RP data analysis we used descriptive statistics and geostatistics. The soil mechanical resistance to penetration presented increased variability, with adjustment of the spherical and exponential semivariograms in the layers. We found that 42% of the area in the layer of 0.10-0.20m showed RP values above 2.70 MPa. Maximum values of RP were found in the layer of 0.19-0.27m, predominantly in 56% of the area.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The soil penetration resistance is an important indicator of soil compaction and is strongly influenced by soil water content. The objective of this study was to develop mathematical models to normalize soil penetration resistance (SPR), using a reference value of gravimetric soil water content (U). For this purpose, SPR was determined with an impact penetrometer, in an experiment on a Dystroferric Red Latossol (Rhodic Eutrudox), at six levels of soil compaction, induced by mechanical chiseling and additional compaction by the traffic of a harvester (four, eight, 10, and 20 passes); in addition to a control treatment under no-tillage, without chiseling or additional compaction. To broaden the range of U values, SPR was evaluated in different periods. Undisturbed soil cores were sampled to quantify the soil bulk density (BD). Pedotransfer functions were generated correlating the values of U and BD to the SPR values. By these functions, the SPR was adequately corrected for all U and BD data ranges. The method requires only SPR and U as input variables in the models. However, different pedofunctions are needed according to the soil layer evaluated. After adjusting the pedotransfer functions, the differences in the soil compaction levels among the treatments, previously masked by variations of U, became detectable.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study about the spatial variability of data of soil resistance to penetration (RSP) was conducted at layers 0.0-0.1 m, 0.1-0.2 m and 0.2-0.3 m depth, using the statistical methods in univariate forms, i.e., using traditional geostatistics, forming thematic maps by ordinary kriging for each layer of the study. It was analyzed the RSP in layer 0.2-0.3 m depth through a spatial linear model (SLM), which considered the layers 0.0-0.1 m and 0.1-0.2 m in depth as covariable, obtaining an estimation model and a thematic map by universal kriging. The thematic maps of the RSP at layer 0.2-0.3 m depth, constructed by both methods, were compared using measures of accuracy obtained from the construction of the matrix of errors and confusion matrix. There are similarities between the thematic maps. All maps showed that the RSP is higher in the north region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During timber exploitation in forest stands harvesting machines pass repeatedly along the same track and can cause soil compaction, which leads to soil erosion and restricted tree root growth. The level of soil compaction depends on the number of passes and weight of the wood load. This paper aimed to evaluate soil compaction and eucalyptus growth as affected by the number of passes and wood load of a forwarder. The study was carried out in Santa Maria de Itabira county, Minas Gerais State - Brazil, on a seven-year-old eucalyptus stand planted on an Oxisol. The trees were felled by chainsaw and manually removed. Plots of 144 m² (four rows 12 m long in a 3 x 2 m spacing) were then marked off for the conduction of two trials. The first tested the traffic intensity of a forwarder which weighed 11,900 kg and carried 12 m³ wood (density of 480 kg m-3) and passed 2, 4, and 8 times along the same track. In the second trial, the forwarder carried loads of 4, 8, and 12 m³ of wood, and the machine was driven four times along the same track. In each plot, the passes affected four rows. Eucalyptus was planted in 30 x 30 x 30 cm holes on the compacted tracks. The soil in the area is clayey (470 clay and 440 g kg-1 sand content) and at depths of 0-5 cm and 5-10 cm, respectively, soil organic carbon was 406 and 272 g kg-1 and the moisture content during the trial 248 and 249 g kg-1. These layers were assessed for soil bulk density and water-stable aggregates. The infiltration rate was measured by a cylinder infiltrometer. After 441 days the measurements were repeated, with additional analyses of: soil organic carbon, total nitrogen, N-NH4+, N-NO3-, porosity, and penetration resistance. Tree height, stem diameter, and stem dry matter were measured. Forwarder traffic increased soil compaction, resistance to penetration and microporosity while it reduced the geometric mean diameter, total porosity, macroporosity and infiltration rate. Stem dry matter yield and tree height were not affected by soil compaction. Two passes of the forwarder were enough to cause the disturbances at the highest levels. The compaction effects were still persistent 441 days after forwarder traffic.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The introduction and intensification of no-tillage systems in Brazilian agriculture in recent decades have created a new scenario, increasing concerns about soil physical properties. The objective of this study was to assess the effects of different tillage systems on some physical properties of an Ultisol previously under native grassland. Five tillage methods were tested: no-tillage (NT), chiseling (Ch), no-tillage with chiseling every two years (NTCh2), chiseling using an equipment with a clod-breaking roller (ChR) and chiseling followed by disking (ChD). The bulk density, macroporosity, microporosity and total porosity, mechanical resistance to penetration, water infiltration into the soil and crop yields were evaluated. The values of soil bulk density, mechanical resistance to penetration and microporosity increased as macroporosity decreased. Soil bulk density was lower in tillage systems with higher levels of tillage/soil mobilization; highest values were observed in NT and the lowest in the ChD system. The water infiltration rate was highest in the ChR system, followed by the systems ChD, NT and NTCh2, while crop yields were higher in systems with less soil mobilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

If inappropriately conducted, management and sowing practices may compromise the environment and the profitability of the agricultural activity. The aim of this study was to analyze the furrow opener mechanisms action and the level of load applied to soil firming mechanism in no-till, on the Oxisol resistance to penetration during soybean sowing, under three soil moistures. The experiment was arranged in split-split plot design, in which the plots were composed by three soil moistures (23.8; 25.5 and 27.5% b.s.), two furrow opener mechanisms sub-plots (double disks and furrow plough) and the split-split plot of three levels of load applied to soil firming mechanism (12.2; 18.5 and 24.1 kPa), according to randomized blocks design, with three replications. The soil moisture provided different resistance behavior to penetration with the depth, on the seedbed, independently of the furrow opener and the level of load applied to soil firming mechanism. The furrow plough use provided less soil resistance to penetration when compared to the double disk furrow opener, on the seedbed, independently of the soil moisture and the level of load applied to soil firming mechanism. The pressure applied by soil firming mechanism of 18.5 kPa provided the lower resistance to penetration, when the furrow plough was used. The soil resistance to penetration was less on the sowing line than on between rows, with 20 cm deep.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tillage systems are a key element of the technology of crop production, both with a view to crop yield and from the perspective of soil conservation and sustainability of the production system. The aim of this paper was to evaluate the effects of five tillage systems on the physical properties of a cohesive Yellow Argisol. The experiment was installed in the field on January 21, 2011 and lasted 260 days, in an area previously used as pasture with Brachiaria grass without liming or fertilization, but irrigated by a low pressure spray system. The treatments, in five replications and in a randomized block design, consisted of: 1) disk plow (twice) + disk harrow + ridge-furrow tillage (raising a ridge along the planting row), 135 days after transplanting (DP + RID); 2) disk plow (twice) + disk harrow (DP no RID); 3) subsoiler (SB); 4) disk plow (twice) + disk harrow + scarification with three shanks along the plant row (DP + SPR); and 5) disk plow (twice) + disk harrow + scarification with three shanks in the total area (DP + STA). In all tillage systems, furrows were mechanically opened for the papaya plants. After the treatments, the mechanical resistance to penetration was determined, followed by soil moisture, mean weight diameter (MWD), geometric mean diameter (GMD), bulk density (BD), macroporosity (Ma), microporosity (Mi), and number of fruits per plant. There were differences in penetration resistance (PR) between treatments. The subsoiler was more effective to decrease RP to a distance of 0.35 m from the plants, perpendicular to the plant row. The scarifier resulted in a lower PR than DP or SB, even at the depth of 0.40 m, and it was more effective at greater distances perpendicular to the plant. All tillage systems induced a PR between 2.0 and 3.0 MPa at the depth with the highest concentration of papaya tree roots (0-0.25 m), improving the physical conditions to this depth. There was no statistical difference among the treatments for BD, Ma, Mi, MWD, and GMD at a depth of 0.20 m. The disk plow changed the physical properties of the soil most intensely to a depth of 0.20 m. The use of scarification, reduced tillage with a forest subsoiler, or ridge-furrow tillage did not improve the physical properties in the rhizosphere. Reduced tillage with a forest subsoiler resulted in a lower number of fruits per plant than all other treatments, which did not differ from each other.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To express the negative effects of soil compaction, some researchers use critical values for soil mechanical strength that severely impair plant growth. The aim of this study was to identify this critical compaction depth, to test the functionality of a new, portable penetrometer developed from a spring dynamometer, and compare it to an electronic penetrometer traditionally used in compaction studies of agricultural soils. Three soils with distinct texture were conventionally tilled using a disk plow, and cultivated with different plant species. The critical soil resistance defined to establish critical compaction depth was equal to 1.5 MPa. The results of the new equipment were similar to the electronic penetrometer, indicating its viability as a tool for assessing the soil physical conditions for plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Modern agriculture techniques have a great impact on crops and soil quality, especially by the increased machinery traffic and weight. Several devices have been developed for determining soil properties in the field, aimed at managing compacted areas. Penetrometry is a widely used technique; however, there are several types of penetrometers, which have different action modes that can affect the soil resistance measurement. The objective of this study was to compare the functionality of two penetrometry methods (manual and automated mode) in the field identification of compacted, highly mechanized sugarcane areas, considering the influence of soil water volumetric content (θ) on soil penetration resistance (PR). Three sugarcane fields on a Rhodic Eutrudrox were chosen, under a sequence of harvest systems: one manual harvest (1ManH), one mechanized harvest (1MH) and three mechanized harvests (3MH). The different degrees of mechanization were associated to cumulative compaction processes. An electronic penetrometer was used on PR measurements, so that the rod was introduced into the soil by hand (Manual) and by an electromechanical motor (Auto). The θ was measured in the field with a soil moisture sensor. Results showed an effect of θ on PR measurements and that regression models must be used to correct data before comparing harvesting systems. The rod introduction modes resulted in different mean PR values, where the "Manual" overestimated PR compared to the "Auto" mode at low θ.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil penetration resistance (PR) and the tensile strength of aggregates (TS) are commonly used to characterize the physical and structural conditions of agricultural soils. This study aimed to assess the functionality of a dynamometry apparatus by linear speed and position control automation of its mobile base to measure PR and TS. The proposed equipment was used for PR measurement in undisturbed samples of a clayey "Nitossolo Vermelho eutroférrico" (Kandiudalfic Eutrudox) under rubber trees sampled in two positions (within and between rows). These samples were also used to measure the volumetric soil water content and bulk density, and determine the soil resistance to penetration curve (SRPC). The TS was measured in a sandy loam "Latossolo Vermelho distrófico" (LVd) - Typic Haplustox - and in a very clayey "Nitossolo Vermelho distroférrico" (NVdf) - Typic Paleudalf - under different uses: LVd under "annual crops" and "native forest", NVdf under "annual crops" and "eucalyptus plantation" (> 30 years old). To measure TS, different strain rates were applied using two dynamometry testing devices: a reference machine (0.03 mm s-1), which has been widely used in other studies, and the proposed equipment (1.55 mm s-1). The determination coefficient values of the SRPC were high (R² > 0.9), regardless of the sampling position. Mean TS values in LVd and NVdf obtained with the proposed equipment did not differ (p > 0.05) from those of the reference testing apparatus, regardless of land use and soil type. Results indicate that PR and TS can be measured faster and accurately by the proposed procedure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The objective of this work was to evaluate the reactions of three peanut breeding lines (IC-10, IC-34, and ICGV 86388) to Tomato spotted wilt virus (TSWV) by mechanical and thrips inoculation, under greenhouse conditions, and compare them to the reactions of cultivars SunOleic, Georgia Green, and the breeding line C11-2-39. TSWV infection by mechanical inoculation was visually assessed using an index ranging from 0 (no symptoms) to 4 (apical death). Enzyme-linked immunosorbent assay was used to confirm TSWV infection from both mechanical and thrips inoculations. IC-10, IC-34, ICGV 86388, and C11-2-39 were more resistant than the cultivars SunOleic and Georgia Green based on mechanical inoculation. Upon thrips inoculation only IC-34 and ICGV-86388 were infected by TSWV, as demonstrated by reverse transcription polymerase chain reaction (RT-PCR), although no symptoms of infection were observed. The peanut breeding lines IC-10, IC-34, and ICGV 86388 show higher level of resistance to TSWV than cultivar Georgia Green considered a standard for TSWV resistance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil characteristics related to the genesis, land use and management are important factors in water dynamics in watersheds. This study evaluated physical, morphological and pedogenetic attributes related to water yield potential in small watersheds in Guarapari, ES, Brazil. The following representative profiles were selected, morphologically described and sampled in area of Atlantic Forest domain: Lithic Udifolists, Oxyaquic Udifluventes, Typic Paleudults, Typic Hapludults, Typic Hapludox, Oxic Dystrudepts and Typic Endoaquents. Samples were collected in the soil profiles for physical analysis. Measurements of field-saturated hydraulic conductivity and soil penetration resistance were perfomed in some profiles, which were under different uses. The Endoaquents of Limão Creek can be considered efficient as temporary water reservoirs. However, the use of artificial drainage tends to reduce this effect. Differential erosion was detected by the sand texture on the surface of the Typic Paleudults due to the low degree of clay flocculation, slope, high resistance to the penetration and low hydraulic conductivity of the Bt horizon, making it necessary to adopt soil management practices to increase the water infiltration. Under pasture, mainly in the cattle trails where the trampling is more intense, there was high resistance to penetration in the superficial layers of the Typic Hapludults. The Typic Hapludox have the greatest potential for water yield in the small watersheds because of its greater extent in the headwaters and their morphological and physical characteristics, which can result in increased aquifer recharge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The intensive use of land alters the distribution of the pore size which imparts consequences on the soil physical quality. The Least Limiting Water Range (LLWR) allows for the visualization of the effects of management systems upon either the improvement or the degradation of the soil physical quality. The objective of this study was to evaluate the physical quality of a Red Latosol (Oxisol) submited to cover crops in the period prior to the maize crop in a no-tillage and conventional tillage system, using porosity, soil bulk density and the LLWR as attributes. The treatments were: conventional tillage (CT) and a no-tillage system with the following cover crops: sunn hemp (Crotalaria juncea L.) (NS), pearl millet (Pennisetum americanum (L.) Leeke) (NP) and lablab (Dolichos lablab L.) (NL). The experimental design was randomized blocks in subdivided plots with six replications, with the plots being constituted by the treatments and the subplots by the layers analyzed. The no-tillage systems showed higher total porosity and soil organic matter at the 0-0.5 m layer for the CT. The CT did not differ from the NL or NS in relation to macroporosity. The NP showed the greater porosity, while CT and NS presented lower soil bulk density. No < 10 % airing porosity was found for the treatments evaluated, and value for water content where soil aeration is critical (θPA) was found above estimated water content at field capacity (θFC) for all densities. Critical soil bulk density was of 1.36 and 1.43 Mg m-3 for NP and CT, respectively. The LLWR in the no-tillage systems was limited in the upper part by the θFC, and in the bottom part, by the water content from which soil resistance to penetration is limiting (θPR). By means of LLWR it was observed that the soil presented good physical quality.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.