4 resultados para slab
em Scielo Saúde Pública - SP
Resumo:
The legal Pantanal caiman (Caiman crocodilus yacare) farming, in Brazil, has been stimulated and among meat preservation techniques the salting process is a relatively simple and low-cost method. The objective of this work was to study the sodium chloride diffusion kinetics in farmed caiman muscle during salting. Limited volumes of brine were employed, with salting essays carried at 3, 4 and 5 brine/muscle ratios, at 15%, 20% and 25% w/w brine concentrations, and brine temperatures of 10, 15 and 20ºC. The analytical solution of second Fick's law considering one-dimensional diffusion through an infinite slab in contact with a well-stirred solution of limited volume was used to calculate effective salt diffusion coefficients and to predict the sodium chloride content in the fillets. A good agreement was obtained between the considered analytical model and experimental data. Salt diffusivities in fillets were found to be in the range of 0.47x10-10 to 9.62x10-10 m²/s.
Resumo:
Calculations based on density functional theory at the B3LYP hybrid functional level applied to periodic models have been performed to characterize the structural and electronic properties of PbTiO3. Two different slab terminations (PbO and TiO2) have been considered to obtain and discuss the results of band structure, density of states, charge distribution on bulk and surface relaxation. It is observed that the relaxation processes are most prominent for the Ti and Pb surface atoms. The electron density maps confirm the partial covalent character of the Ti-O bonds. The calculated optical band gap and other results are in agreement with experimental data.
Resumo:
In this work was made an investigation about bulk and surface models (at maximum 20 layers) of the TiO2 material in the (001) direction. TiO2 commercial sample was feature using XDR technique to determine phase and crystallites average size. Bulk and (001) surface models were simulated for TiO2 material using DFT/B3LYP and its results were used for calculating energy surface, electronic levels, superficial atomic displacement and charge maps. Atoms of the first and second layers of the slab model showed electronic densities very well organized in the form of chains or wires.
Resumo:
Cotyledonary b-galactosidases were isolated and partially purified from Pitiúba cowpea (Vigna unguiculata (L.) Walp.) quiescent seeds. The purification steps consisted of precipitation of the crude extract with ammonium sulphate in the range of 20-60% saturation, acid precipitation, DEAE-Sephadex ion-exchange chromatography and Lactosyl-Sepharose affinity chromatography. This purification process gave rise to three b-galactosidases-rich fractions: b-gal I, b-gal II and b-gal III, which were purified about 5, 509, and 62 fold, respectively. They reached maximal enzyme activity at different pH ranges: 3.5-4.5 for b-gal I, 3.0-3.5 for b-gal II, and 3.0-4.0 for b-gal III. Their maximal activities were reached when the temperature of the assay medium was 60° C, and preincubation of the enzymes at different temperatures has shown that they were heat-stable up to 50° C. There were no significant differences among the partially purified enzymes as far as their response to the different effectors tested, except for Mn2+ and EDTA, which affected differently b-gal I, b-gal II, and b-gal III. They were slightly affected by Mg2+, Ca2+, Zn2+, Co2+, tartarate, molybdate, glucose, and lactose, strongly inhibited by Cu2+ and galactose, and inactivated by Hg2+. These chemical and physical properties are similar to the ones found for other plant b-galactosidases. Although through this process of purification three isoforms of this enzyme were obtained, isoelectric focusing in polyacrylamide slab gel of these enzyme-proteins suggest that cotyledons of Pitiúba cowpea quiescent seeds possess four isoforms of b-galactosidases.