18 resultados para simulation model
em Scielo Saúde Pública - SP
Resumo:
Data was analyzed on development of the solanaceen fruit crop Cape gooseberry to evaluate how well a classical thermal time model could describe node appearance in different environments. The data used in the analysis were obtained from experiments conducted in Colombia in open fields and greenhouse condition at two locations with different climate. An empirical, non linear segmented model was used to estimate the base temperature and to parameterize the model for simulation of node appearance vs. time. The base temperature (Tb) used to calculate the thermal time (TT, ºCd) for node appearance was estimated to be 6.29 ºC. The slope of the first linear segment was 0.023 nodes per TT and 0.008 for the second linear segment. The time at which the slope of node apperance changed was 1039.5 ºCd after transplanting, determined from a statistical analysis of model for the first segment. When these coefficients were used to predict node appearance at all locations, the model successfully fit the observed data (RSME=2.1), especially for the first segment where node appearance was more homogeneous than the second segment. More nodes were produced by plants grown under greenhouse conditions and minimum and maximum rates of node appearance rates were also higher.
Resumo:
ABSTRACT The traditional method of net present value (NPV) to analyze the economic profitability of an investment (based on a deterministic approach) does not adequately represent the implicit risk associated with different but correlated input variables. Using a stochastic simulation approach for evaluating the profitability of blueberry (Vaccinium corymbosum L.) production in Chile, the objective of this study is to illustrate the complexity of including risk in economic feasibility analysis when the project is subject to several but correlated risks. The results of the simulation analysis suggest that the non-inclusion of the intratemporal correlation between input variables underestimate the risk associated with investment decisions. The methodological contribution of this study illustrates the complexity of the interrelationships between uncertain variables and their impact on the convenience of carrying out this type of business in Chile. The steps for the analysis of economic viability were: First, adjusted probability distributions for stochastic input variables (SIV) were simulated and validated. Second, the random values of SIV were used to calculate random values of variables such as production, revenues, costs, depreciation, taxes and net cash flows. Third, the complete stochastic model was simulated with 10,000 iterations using random values for SIV. This result gave information to estimate the probability distributions of the stochastic output variables (SOV) such as the net present value, internal rate of return, value at risk, average cost of production, contribution margin and return on capital. Fourth, the complete stochastic model simulation results were used to analyze alternative scenarios and provide the results to decision makers in the form of probabilities, probability distributions, and for the SOV probabilistic forecasts. The main conclusion shown that this project is a profitable alternative investment in fruit trees in Chile.
Resumo:
Fusarium Head Blight (FHB) is a disease of great concern in wheat (Triticum aestivum). Due to its relatively narrow susceptible phase and environmental dependence, the pathosystem is suitable for modeling. In the present work, a mechanistic model for estimating an infection index of FHB was developed. The model is process-based driven by rates, rules and coefficients for estimating the dynamics of flowering, airborne inoculum density and infection frequency. The latter is a function of temperature during an infection event (IE), which is defined based on a combination of daily records of precipitation and mean relative humidity. The daily infection index is the product of the daily proportion of susceptible tissue available, infection frequency and spore cloud density. The model was evaluated with an independent dataset of epidemics recorded in experimental plots (five years and three planting dates) at Passo Fundo, Brazil. Four models that use different factors were tested, and results showed all were able to explain variation for disease incidence and severity. A model that uses a correction factor for extending host susceptibility and daily spore cloud density to account for post-flowering infections was the most accurate explaining 93% of the variation in disease severity and 69% of disease incidence according to regression analysis.
Resumo:
This work analyzes an active fuzzy logic control system in a Rijke type pulse combustor. During the system development, a study of the existing types of control for pulse combustion was carried out and a simulation model was implemented to be used with the package Matlab and Simulink. Blocks which were not available in the simulator library were developed. A fuzzy controller was developed and its membership functions and inference rules were established. The obtained simulation showed that fuzzy logic is viable in the control of combustion instabilities. The obtained results indicated that the control system responded to pulses in an efficient and desirable way. It was verified that the system needed approximately 0.2 s to increase the tube internal pressure from 30 to 90 mbar, with an assumed total delay of 2 ms. The effects of delay variation were studied. Convergence was always obtained and general performance was not affected by the delay. The controller sends a pressure signal in phase with the Rijke tube internal pressure signal, through the speakers, when an increase the oscillations pressure amplitude is desired. On the other hand, when a decrease of the tube internal pressure amplitude is desired, the controller sends a signal 180º out of phase.
Resumo:
In South America, yellow fever (YF) is an established infectious disease that has been identified outside of its traditional endemic areas, affecting human and nonhuman primate (NHP) populations. In the epidemics that occurred in Argentina between 2007-2009, several outbreaks affecting humans and howler monkeys (Alouatta spp) were reported, highlighting the importance of this disease in the context of conservation medicine and public health policies. Considering the lack of information about YF dynamics in New World NHP, our main goal was to apply modelling tools to better understand YF transmission dynamics among endangered brown howler monkey (Alouatta guariba clamitans) populations in northeastern Argentina. Two complementary modelling tools were used to evaluate brown howler population dynamics in the presence of the disease: Vortex, a stochastic demographic simulation model, and Outbreak, a stochastic disease epidemiology simulation. The baseline model of YF disease epidemiology predicted a very high probability of population decline over the next 100 years. We believe the modelling approach discussed here is a reasonable description of the disease and its effects on the howler monkey population and can be useful to support evidence-based decision-making to guide actions at a regional level.
Resumo:
The objective of this study was to assess the development response of cultivated rice and red rice to different increases in minimum and maximum daily air temperatures, in Santa Maria, Rio Grande do Sul State, Brazil. One hundred years climate scenarios of temperatures 0, +1, +2, +3, +4, and +5ºC, with symmetric and asymmetric increases in minimum and maximum daily air temperatures were created, using the LARS-WG Weather Generator, and a 1969-2003 database. Nine cultivated rice genotypes (IRGA 421, IRGA 416, IRGA 417, IRGA 420, BRS 7 TAIM, BR-IRGA 409, EPAGRI 109, EEA 406 and a hybrid), and two red rice biotypes (awned black hull-ABHRR, and awned yellow hull-AYHRR) were used. The dates of panicle differentiation (R1), anthesis (R4), and all grains with brown hulls (R9) were estimated with a nonlinear simulation model. Overall, the duration of the emergence-R1 phase decreased, whereas the duration of the R1-R4 and R4-R9 phases most often increased, as temperature increased in the climate change scenarios. The simulated rice development response to elevated temperature was not the same, when the increase in minimum and maximum temperature was symmetric or asymmetric.
Resumo:
The objective of this work was to evaluate an estimation system for rice yield in Brazil, based on simple agrometeorological models and on the technological level of production systems. This estimation system incorporates the conceptual basis proposed by Doorenbos & Kassam for potential and attainable yields with empirical adjusts for maximum yield and crop sensitivity to water deficit, considering five categories of rice yield. Rice yield was estimated from 2000/2001 to 2007/2008, and compared to IBGE yield data. Regression analyses between model estimates and data from IBGE surveys resulted in significant coefficients of determination, with less dispersion in the South than in the North and Northeast regions of the country. Index of model efficiency (E1') ranged from 0.01 in the lower yield classes to 0.45 in higher ones, and mean absolute error ranged from 58 to 250 kg ha‑1, respectively.
Resumo:
ABSTRACT The citriculture consists in several environmental risks, as weather changes and pests, and also consists in considerable financial risk, mainly due to the period ofreturn on the initial investment. This study was motivated by the need to assess the risks of a business activity such as citriculture. Our objective was to build a stochastic simulation model to achieve the economic and financial analysis of an orange producer in the Midwest region of the state of Sao Paulo, under conditions of uncertainty. The parameters used were the Net Present Value (NPV), the Modified Internal Rate of Return(MIRR), and the Discounted Payback. To evaluate the risk conditions we built a probabilistic model of pseudorandom numbers generated with Monte Carlo method. The results showed that the activity analyzed provides a risk of 42.8% to reach a NPV negative; however, the yield assessed by MIRR was 7.7%, higher than the yield from the reapplication of the positive cash flows. The financial investment pays itself after the fourteenth year of activity.
Resumo:
Rust, caused by Puccinia psidii, is one of the most important diseases affecting eucalyptus in Brazil. This pathogen causes disease in mini-clonal garden and in young plants in the field, especially in leaves and juvenile shoots. Favorable climate conditions for infection by this pathogen in eucalyptus include temperature between 18 and 25 ºC, together with at least 6-hour leaf wetness periods, for 5 to 7 consecutive days. Considering the interaction between the environment and the pathogen, this study aimed to evaluate the potential impact of global climate changes on the spatial distribution of areas of risk for the occurrence of eucalyptus rust in Brazil. Thus, monthly maps of the areas of risk for the occurrence of this disease were elaborated, considering the current climate conditions, based on a historic series between 1961 and 1990, and the future scenarios A2 and B2, predicted by IPCC. The climate conditions were classified into three categories, according to the potential risk for the disease occurrence, considering temperature (T) and air relative humidity (RH): i) high risk (18 < T < 25 ºC and RH > 90%); ii) medium risk (18 < T < 25 ºC and RH < 90%; T< 18 or T > 25 ºC and RH > 90%); and iii) low risk (T < 18 or T > 25 ºC and RH < 90%). Data about the future climate scenarios were supplied by GCM Change Fields. In this study, the simulation model Hadley Centers for Climate Prediction and Research (HadCm3) was adopted, using the software Idrisi 32. The obtained results led to the conclusion that there will be a reduction in the area favorable to eucalyptus rust occurrence, and such a reduction will be gradual for the decades of 2020, 2050 and 2080 but more marked in scenario A2 than in B2. However, it is important to point out that extensive areas will still be favorable to the disease development, especially in the coldest months of the year, i.e., June and July. Therefore, the zoning of areas and periods of higher occurrence risk, considering the global climate changes, becomes important knowledge for the elaboration of predicting models and an alert for the integrated management of this disease.
Resumo:
Linear programming models are effective tools to support initial or periodic planning of agricultural enterprises, requiring, however, technical coefficients that can be determined using computer simulation models. This paper, presented in two parts, deals with the development, application and tests of a methodology and of a computational modeling tool to support planning of irrigated agriculture activities. Part I aimed at the development and application, including sensitivity analysis, of a multiyear linear programming model to optimize the financial return and water use, at farm level for Jaíba irrigation scheme, Minas Gerais State, Brazil, using data on crop irrigation requirement and yield, obtained from previous simulation with MCID model. The linear programming model outputted a crop pattern to which a maximum total net present value of R$ 372,723.00 for the four years period, was obtained. Constraints on monthly water availability, labor, land and production were critical in the optimal solution. In relation to the water use optimization, it was verified that an expressive reductions on the irrigation requirements may be achieved by small reductions on the maximum total net present value.
Resumo:
In this article, a methodology is used for the simultaneous determination of the effective diffusivity and the convective mass transfer coefficient in porous solids, which can be considered as an infinite cylinder during drying. Two models are used for optimization and drying simulation: model 1 (constant volume and diffusivity, with equilibrium boundary condition), and model 2 (constant volume and diffusivity with convective boundary condition). Optimization algorithms based on the inverse method were coupled to the analytical solutions, and these solutions can be adjusted to experimental data of the drying kinetics. An application of optimization methodology was made to describe the drying kinetics of whole bananas, using experimental data available in the literature. The statistical indicators enable to affirm that the solution of diffusion equation with convective boundary condition generates results superior than those with the equilibrium boundary condition.
Resumo:
ABSTRACT The aim of this study was to evaluate the effects of modifying the maintenance programming of equipment used in sugarcane mechanical harvesting, by transferring actions that can be planned to periods when machines are inactive due to meal breaks and other working shift transitions stoppages. A simulation model was developed to represent the maintenance procedures of combines, haulouts, and other vehicles used by a harvest team. Scenarios were tested using alternatives for interventions such as refueling, lubrication and harvester blade replacement, enabling strategies to be focused towards better utilization of cutting, loading, and transport (CLT) system equipment. As a result, it was possible to remove one combine and two haulouts, while maintaining current daily production. The maintenance time for harvesters, which refers to corrective maintenance and the transfer of remaining interventions for periods of inactivity, was reduced from 10.0% to 3.5% over the useful period. This study indicates that maintenance management in the sugarcane sector enables the expanded use of equipment, leading to the greater productivity of the CLT system.
Resumo:
Mathematical models have great potential to support land use planning, with the goal of improving water and land quality. Before using a model, however, the model must demonstrate that it can correctly simulate the hydrological and erosive processes of a given site. The SWAT model (Soil and Water Assessment Tool) was developed in the United States to evaluate the effects of conservation agriculture on hydrological processes and water quality at the watershed scale. This model was initially proposed for use without calibration, which would eliminate the need for measured hydro-sedimentologic data. In this study, the SWAT model was evaluated in a small rural watershed (1.19 km²) located on the basalt slopes of the state of Rio Grande do Sul in southern Brazil, where farmers have been using cover crops associated with minimum tillage to control soil erosion. Values simulated by the model were compared with measured hydro-sedimentological data. Results for surface and total runoff on a daily basis were considered unsatisfactory (Nash-Sutcliffe efficiency coefficient - NSE < 0.5). However simulation results on monthly and annual scales were significantly better. With regard to the erosion process, the simulated sediment yields for all years of the study were unsatisfactory in comparison with the observed values on a daily and monthly basis (NSE values < -6), and overestimated the annual sediment yield by more than 100 %.
Resumo:
The objective of this work was to adapt the CROPGRO model, which is part of the DSSAT system, for simulating the cowpea (Vigna unguiculata) growth and development under soil and climate conditions of the Baixo Parnaíba region, Piauí State, Brazil. In the CROPGRO, only input parameters that define crop species, cultivars, and ecotype were changed in order to characterize the cowpea crop. Soil and climate files were created for the considered site. Field experiments without water deficit were used to calibrate the model. In these experiments, dry matter (DM), leaf area index (LAI), yield components and grain yield of cowpea (cv. BR 14 Mulato) were evaluated. The results showed good fit for DM and LAI estimates. The medium values of R² and medium absolute error (MAE) were, respectively, 0.95 and 264.9 kg ha-1 for DM, and 0.97 and 0.22 for LAI. The difference between observed and simulated values of plant phenology varied from 0 to 3 days. The model also presented good performance for yield components simulation, excluding 100-grain weight, for which the error ranged from 20.9% to 34.3%. Considering the medium values of crop yield in two years, the model presented an error from 5.6%.
Resumo:
The objective of this study was to model mathematically and to simulate the dynamic behavior of an auger-type fertilizer applicator (AFA) in order to use the variable-rate application (VRA) and reduce the coefficient of variation (CV) of the application, proposing an angular speed controller θ' for the motor drive shaft. The input model was θ' and the response was the fertilizer mass flow, due to the construction, density of fertilizer, fill factor and the end position of the auger. The model was used to simulate a control system in open loop, with an electric drive for AFA using an armature voltage (V A) controller. By introducing a sinusoidal excitation signal in V A with amplitude and delay phase optimized and varying θ' during an operation cycle, it is obtained a reduction of 29.8% in the CV (constant V A) to 11.4%. The development of the mathematical model was a first step towards the introduction of electric drive systems and closed loop control for the implementation of AFA with low CV in VRA.