13 resultados para series-parallel model
em Scielo Saúde Pública - SP
Resumo:
A total of 868 (84.89%) patients diagnosed with tetanus were studied, out of the 1,024 tetanus patients hospitalized at Couto Maia Hospital (Salvador, Bahia, Brazil), during the period between 1986 and 1997. Of this group (n = 868), 63.5% (n = 551) were discharged, 35.4% (n = 307) died, and 1.1% (n = 10) were transferred. The average age of the deceased patients (38.73 ± 23.31 years) was significantly greater (p < 0.0001) than the age of those who survived (29.21 ± 20.05 years). Analyzing the variables of the logistic regression model with statistic significance (p £ 0.25) for univariate analysis, we observed a greater association of risk for worst prognosis (death) in patients aged ³ 51 years; time of illness < 48 hours; time of incubation < 168 hours; neck rigidity; spasms; opisthotonos; body temperature ³ 37.7 ºC; heart beat ³ 111 beats/minute; sympathetic hyperactivity and association with pneumonia. Among the group of those who survived, patients with 1 to 5 of those variables (n = 398; 76.8%) were more frequent, while among patients of the group of the deceased, 70.3% (n = 206) presented 6 to 10 of those variables, with a highly significant difference (p < 10-8). In conclusion, the indicators described provide early information that may guide the prognosis and medical and nurse care.
Resumo:
INTRODUCTION: Forecasting dengue cases in a population by using time-series models can provide useful information that can be used to facilitate the planning of public health interventions. The objective of this article was to develop a forecasting model for dengue incidence in Campinas, southeast Brazil, considering the Box-Jenkins modeling approach. METHODS: The forecasting model for dengue incidence was performed with R software using the seasonal autoregressive integrated moving average (SARIMA) model. We fitted a model based on the reported monthly incidence of dengue from 1998 to 2008, and we validated the model using the data collected between January and December of 2009. RESULTS: SARIMA (2,1,2) (1,1,1)12 was the model with the best fit for data. This model indicated that the number of dengue cases in a given month can be estimated by the number of dengue cases occurring one, two and twelve months prior. The predicted values for 2009 are relatively close to the observed values. CONCLUSIONS: The results of this article indicate that SARIMA models are useful tools for monitoring dengue incidence. We also observe that the SARIMA model is capable of representing with relative precision the number of cases in a next year.
Resumo:
The objective of this work was to evaluate the feasibility of simulating maize yield in a sub‑tropical region of southern Brazil using the general large area model (Glam). A 16‑year time series of daily weather data were used. The model was adjusted and tested as an alternative for simulating maize yield at small and large spatial scales. Simulated and observed grain yields were highly correlated (r above 0.8; p<0.01) at large scales (greater than 100,000 km²), with variable and mostly lower correlations (r from 0.65 to 0.87; p<0.1) at small spatial scales (lower than 10,000 km²). Large area models can contribute to monitoring or forecasting regional patterns of variability in maize production in the region, providing a basis for agricultural decision making, and Glam‑Maize is one of the alternatives.
Resumo:
Hydrological models are important tools that have been used in water resource planning and management. Thus, the aim of this work was to calibrate and validate in a daily time scale, the SWAT model (Soil and Water Assessment Tool) to the watershed of the Galo creek , located in Espírito Santo State. To conduct the study we used georeferenced maps of relief, soil type and use, in addition to historical daily time series of basin climate and flow. In modeling were used time series corresponding to the periods Jan 1, 1995 to Dec 31, 2000 and Jan 1, 2001 to Dec 20, 2003 for calibration and validation, respectively. Model performance evaluation was done using the Nash-Sutcliffe coefficient (E NS) and the percentage of bias (P BIAS). SWAT evaluation was also done in the simulation of the following hydrological variables: maximum and minimum annual daily flowsand minimum reference flows, Q90 and Q95, based on mean absolute error. E NS and P BIAS were, respectively, 0.65 and 7.2% and 0.70 and 14.1%, for calibration and validation, indicating a satisfactory performance for the model. SWAT adequately simulated minimum annual daily flow and the reference flows, Q90 and Q95; it was not suitable in the simulation of maximum annual daily flows.
Resumo:
The Bartlett-Lewis Rectangular Pulse Modified (BLPRM) model simulates the precipitous slide in the hourly and sub-hourly and has six parameters for each of the twelve months of the year. This study aimed to evaluate the behavior of precipitation series in the duration of 15 min, obtained by simulation using the model BLPRM in situations: (a) where the parameters are estimated from a combination of statistics, creating five different sets; (b) suitability of the model to generate rain. To adjust the parameters were used rain gauge records of Pelotas/RS/Brazil, which statistics were estimated - mean, variance, covariance, autocorrelation coefficient of lag 1, the proportion of dry days in the period considered. The results showed that the parameters related to the time of onset of precipitation (λ) and intensities (μx) were the most stable and the most unstable were ν parameter, related to rain duration. The BLPRM model adequately represented the mean, variance, and proportion of the dry period of the series of precipitation lasting 15 min and, the time dependence of the heights of rain, represented autocorrelation coefficient of the first retardation was statistically less simulated series suitability for the duration of 15 min.
Resumo:
PURPOSE:Pregnant women have a 2-3 fold higher probability of developing restless legs syndrome (RLS – sleep-related movement disorders) than general population. This study aims to evaluate the behavior and locomotion of rats during pregnancy in order to verify if part of these animals exhibit some RLS-like features.METHODS:We used 14 female 80-day-old Wistar rats that weighed between 200 and 250 g. The rats were distributed into control (CTRL) and pregnant (PN) groups. After a baseline evaluation of their behavior and locomotor activity in an open-field environment, the PN group was inducted into pregnancy, and their behavior and locomotor activity were evaluated on days 3, 10 and 19 of pregnancy and in the post-lactation period in parallel with the CTRL group. The serum iron and transferrin levels in the CTRL and PN groups were analyzed in blood collected after euthanasia by decapitation.RESULTS:There were no significant differences in the total ambulation, grooming events, fecal boli or urine pools between the CTRL and PN groups. However, the PN group exhibited fewer rearing events, increased grooming time and reduced immobilization time than the CTRL group (ANOVA, p<0.05).CONCLUSION:These results suggest that pregnant rats show behavioral and locomotor alterations similar to those observed in animal models of RLS, demonstrating to be a possible animal model of this sleep disorder.
Resumo:
A parallel pseudo-spectral method for the simulation in distributed memory computers of the shallow-water equations in primitive form was developed and used on the study of turbulent shallow-waters LES models for orographic subgrid-scale perturbations. The main characteristics of the code are: momentum equations integrated in time using an accurate pseudo-spectral technique; Eulerian treatment of advective terms; and parallelization of the code based on a domain decomposition technique. The parallel pseudo-spectral code is efficient on various architectures. It gives high performance onvector computers and good speedup on distributed memory systems. The code is being used for the study of the interaction mechanisms in shallow-water ows with regular as well as random orography with a prescribed spectrum of elevations. Simulations show the evolution of small scale vortical motions from the interaction of the large scale flow and the small-scale orographic perturbations. These interactions transfer energy from the large-scale motions to the small (usually unresolved) scales. The possibility of including the parametrization of this effects in turbulent LES subgrid-stress models for the shallow-water equations is addressed.
Resumo:
Chaotic dynamical systems exhibit trajectories in their phase space that converges to a strange attractor. The strangeness of the chaotic attractor is associated with its dimension in which instance it is described by a noninteger dimension. This contribution presents an overview of the main definitions of dimension discussing their evaluation from time series employing the correlation and the generalized dimension. The investigation is applied to the nonlinear pendulum where signals are generated by numerical integration of the mathematical model, selecting a single variable of the system as a time series. In order to simulate experimental data sets, a random noise is introduced in the time series. State space reconstruction and the determination of attractor dimensions are carried out regarding periodic and chaotic signals. Results obtained from time series analyses are compared with a reference value obtained from the analysis of mathematical model, estimating noise sensitivity. This procedure allows one to identify the best techniques to be applied in the analysis of experimental data.
Resumo:
Reliable predictions of remaining lives of civil or mechanical structures subjected to fatigue damage are very difficult to be made. In general, fatigue damage is extremely sensitive to the random variations of material mechanical properties, environment and loading. These variations may induce large dispersions when the structural fatigue life has to be predicted. Wirsching (1970) mentions dispersions of the order of 30 to 70 % of the mean calculated life. The presented paper introduces a model to estimate the fatigue damage dispersion based on known statistical distributions of the fatigue parameters (material properties and loading). The model is developed by expanding into Taylor series the set of equations that describe fatigue damage for crack initiation.
Resumo:
In the present study, using noise-free simulated signals, we performed a comparative examination of several preprocessing techniques that are used to transform the cardiac event series in a regularly sampled time series, appropriate for spectral analysis of heart rhythm variability (HRV). First, a group of noise-free simulated point event series, which represents a time series of heartbeats, was generated by an integral pulse frequency modulation model. In order to evaluate the performance of the preprocessing methods, the differences between the spectra of the preprocessed simulated signals and the true spectrum (spectrum of the model input modulating signals) were surveyed by visual analysis and by contrasting merit indices. It is desired that estimated spectra match the true spectrum as close as possible, showing a minimum of harmonic components and other artifacts. The merit indices proposed to quantify these mismatches were the leakage rate, defined as a measure of leakage components (located outside some narrow windows centered at frequencies of model input modulating signals) with respect to the whole spectral components, and the numbers of leakage components with amplitudes greater than 1%, 5% and 10% of the total spectral components. Our data, obtained from a noise-free simulation, indicate that the utilization of heart rate values instead of heart period values in the derivation of signals representative of heart rhythm results in more accurate spectra. Furthermore, our data support the efficiency of the widely used preprocessing technique based on the convolution of inverse interval function values with a rectangular window, and suggest the preprocessing technique based on a cubic polynomial interpolation of inverse interval function values and succeeding spectral analysis as another efficient and fast method for the analysis of HRV signals
Resumo:
A pulsatile pressure-flow model was developed for in vitro quantitative color Doppler flow mapping studies of valvular regurgitation. The flow through the system was generated by a piston which was driven by stepper motors controlled by a computer. The piston was connected to acrylic chambers designed to simulate "ventricular" and "atrial" heart chambers. Inside the "ventricular" chamber, a prosthetic heart valve was placed at the inflow connection with the "atrial" chamber while another prosthetic valve was positioned at the outflow connection with flexible tubes, elastic balloons and a reservoir arranged to mimic the peripheral circulation. The flow model was filled with a 0.25% corn starch/water suspension to improve Doppler imaging. A continuous flow pump transferred the liquid from the peripheral reservoir to another one connected to the "atrial" chamber. The dimensions of the flow model were designed to permit adequate imaging by Doppler echocardiography. Acoustic windows allowed placement of transducers distal and perpendicular to the valves, so that the ultrasound beam could be positioned parallel to the valvular flow. Strain-gauge and electromagnetic transducers were used for measurements of pressure and flow in different segments of the system. The flow model was also designed to fit different sizes and types of prosthetic valves. This pulsatile flow model was able to generate pressure and flow in the physiological human range, with independent adjustment of pulse duration and rate as well as of stroke volume. This model mimics flow profiles observed in patients with regurgitant prosthetic valves.
Resumo:
Maintenance of thermal homeostasis in rats fed a high-fat diet (HFD) is associated with changes in their thermal balance. The thermodynamic relationship between heat dissipation and energy storage is altered by the ingestion of high-energy diet content. Observation of thermal registers of core temperature behavior, in humans and rodents, permits identification of some characteristics of time series, such as autoreference and stationarity that fit adequately to a stochastic analysis. To identify this change, we used, for the first time, a stochastic autoregressive model, the concepts of which match those associated with physiological systems involved and applied in male HFD rats compared with their appropriate standard food intake age-matched male controls (n=7 per group). By analyzing a recorded temperature time series, we were able to identify when thermal homeostasis would be affected by a new diet. The autoregressive time series model (AR model) was used to predict the occurrence of thermal homeostasis, and this model proved to be very effective in distinguishing such a physiological disorder. Thus, we infer from the results of our study that maximum entropy distribution as a means for stochastic characterization of temperature time series registers may be established as an important and early tool to aid in the diagnosis and prevention of metabolic diseases due to their ability to detect small variations in thermal profile.
Resumo:
Findings on the effects of weather on health, especially the effects of ambient temperature on overall morbidity, remain inconsistent. We conducted a time series study to examine the acute effects of meteorological factors (mainly air temperature) on daily hospital outpatient admissions for cardiovascular disease (CVD) in Zunyi City, China, from January 1, 2007 to November 30, 2009. We used the generalized additive model with penalized splines to analyze hospital outpatient admissions, climatic parameters, and covariate data. Results show that, in Zunyi, air temperature was associated with hospital outpatient admission for CVD. When air temperature was less than 10°C, hospital outpatient admissions for CVD increased 1.07-fold with each increase of 1°C, and when air temperature was more than 10°C, an increase in air temperature by 1°C was associated with a 0.99-fold decrease in hospital outpatient admissions for CVD over the previous year. Our analyses provided statistically significant evidence that in China meteorological factors have adverse effects on the health of the general population. Further research with consistent methodology is needed to clarify the magnitude of these effects and to show which populations and individuals are vulnerable.