47 resultados para secretory cells
em Scielo Saúde Pública - SP
Resumo:
(Ultrastructure of secretory and senescence phase in colleters of Bathysa gymnocarpa and B. stipulata (Rubiaceae)). Colleters are secretory structures formed by a parenchymatic axis with vascular bundles, bound by a layer of secretory palisade-like epidermis. Some studies regarding the structure of colleters have focused on secretory cells structure, but not distinguished the secretory and senescent phases. Generally, in mucilage-secreting cells such as colleters, the endoplasmic reticulum and Golgi apparatus are involved in secretion production and transport. In these study, colleters structure of Bathysa gymnocarpa K. Schum. and B. stipulata (Vell.) C. Presl. (Rubiaceae) were determined in two phases: a secretory phase and a senescence one. Samples were collected and processed by usual light and electron microscopy techniques. Studied colleters are constituted by an epidermal palisade layer and a central axis formed by parenchymatic cells with rare vascular traces. During the secretory phase, epidermal cells presented a dense cytoplasm, small vacuoles, enhanced rough and smooth endoplasmic reticulum, and a Golgi apparatus close to large vesicles. During the senescence phase epidermal cells presented a disorganized membrane system. No intact organelles or vesicles were observed. The outer cell wall exhibited similar layers to that observed during the secretory phase. The senescent phase is easily defined by the morphology of the colleters, but not well defined at subcellular level. Our research suggests that programmed cell death starts on secretory phase. However, more evidences are needed to evaluate the phenomena.
Resumo:
The acini of pelvian glands of Chaetophractus villosus (Desmarest, 1804) consisted of an inner layer of secretory cells and an outer layer of myoepithelial cells. Secretory cells have numerous secretory vacuoles. The secretion is released by exocytosis. Myoepithelial cells have numerous myofilaments that occupy much of the cytoplasm. There is a third cell type with an extremely electron-lucent cytoplasm.
Resumo:
The Brindley's glands of Panstrongylus megistus were studied under the antomic, histologic and ultrastructural point of view. These glands located in the insect's methatorax are paired and have an opening near the third parir of the feet. Beside this aperture, ther are evaporation areas. Shape, sixe and aspect of the gland vary according to the feeding status. The glands are composed by a tubular part corresponding to the duct and a sack-like portion corrsponding to the secretory part. By electron microscopy we observed that the basal part of the epithelium has many interdigitations associated with mitochondria. On the apical surface where epicuticular foldings are located an electonlucent space is often seen. The glands are composed of the following elements: 1) superficial epithelial cells, located just below the apical surface foldings; 2) secretory cells; which are long and have an intracellular canalicule which changes according to the functional state of the cell; 3) a collecting duct to the secretory cells and covered with an epicuticle, reaching up to the gland's lumen; and 4) cells around the duct.
Resumo:
Abstract: The paired oviducal glands of immature and mature females of Mustelus schmitti were examined macro and microscopically. Findings indicate that these glands possessed the same zonation as in most chondrichthyans from anterior to posterior: club, papillary, baffle and terminal zones. The whole gland is composed by simple tubular glands that connect with transverse grooves all along the organ. The club zone presents a typical indian club shape with a simple columnar and ciliated epithelium including secretory cells PAS (+) and AB (+). The papillary zone is characterized by lamella forming small and long cones in numbers of three. The epithelium of this zone contains ciliated cells with apical nuclei and secretory cells with basal nuclei that stain AB (+)The baffle zone consists of apically flattened lamellae alternating with spinnerets which are small projections disposed by both sides of the plateau. This whole structure is present in number of 8 or 9 units. A simple columnar ciliated epithelium covers the plateau and spinnerets and no AB or PAS staining is observed. The epithelium of the terminal zone is PAS (-) and AB (+), and elongated tubules, that run adjacent to the baffle zone are the site where groups of spermatozoa are clearly observed in the lumen. The epithelium of the sperm storage tubules do not stain with any of the dyes tested. Sperm was also observed in the baffle zone, presumably in its way to the fecundation in the oviduct because it displays no aggregation pattern and was between the folds of the epithelium. By scanning electron microscopy sperm was observed in the club and baffle zones in a gland which belonged to a pregnant female.
Resumo:
This paper reports on the extrafloral nectary (EFN) of Hibiscus pernambucensis, a native shrub species occurring in mangrove and restinga along Brazil's coastline. EFNs occur as furrows with a protuberant border on the abaxial surface veins of the leaf blade. Each nectary consists of numerous secretory multicellular trichomes, epidermal cells in palisade-like arrangements and non-vascularized parenchyma tissue. Nectar secretion is prolonged, since secretion starts in very young leaves and remains up to completely expanded leaves. Reduced sugars, lipids, and proteins were histochemically detected in all the nectary cells; phenolic substances were detected in the vacuoles of the epidermal palisade cells and in some secretory trichome cells. The secretory cells that constitute the body of trichomes have large nuclei, dense cytoplasm with numerous mitochondria, dictyosomes, scattered lipid droplets and plastids with different inclusions: protein, lipid droplets or starch grains; vacuoles with different sizes have membranous material, phenolic and lipophilic substances. The palisade cells show thick periclinal walls, reduced cytoplasm with voluminous lipid drops and developed vacuoles. The nectary parenchyma cells contain abundant plasmodesmata and cytoplasm with scattered lipid droplets, mitochondria, plastids with starch grains and endoplasmic reticulum. Mucilage idioblasts are common in the inner nectary parenchyma. Protoderm and ground meristem participate in the formation of EFN. Our data indicate that all nectary regions are involved in nectar production and secretion, constituting a functional unit. Longevity of the extrafloral nectaries is likely associated with the presence of mucilage idioblasts, which increases the capacity of the nectary parenchyma to store water.
Resumo:
Heavy metals, such as methylmercury, are key environmental pollutants that easily reach human beings by bioaccumulation through the food chain. Several reports have demonstrated that endocrine organs, and especially the pituitary gland, are potential targets for mercury accumulation; however, the effects on the regulation of hormonal release are unclear. It has been suggested that serum prolactin could represent a biomarker of heavy metal exposure. The aim of this study was to evaluate the effect of methylmercury on prolactin release and the role of the nitrergic system using prolactin secretory cells (the mammosomatotroph cell line, GH3B6). Exposure to methylmercury (0-100 μM) was cytotoxic in a time- and concentration-dependent manner, with an LC50 higher than described for cells of neuronal origin, suggesting GH3B6 cells have a relative resistance. Methylmercury (at exposures as low as 1 μM for 2 h) also decreased prolactin release. Interestingly, inhibition of nitric oxide synthase by N-nitro-L-arginine completely prevented the decrease in prolactin release without acute neurotoxic effects of methylmercury. These data indicate that the decrease in prolactin production occurs via activation of the nitrergic system and is an early effect of methylmercury in cells of pituitary origin.
Resumo:
Oxygen therapy is essential for the treatment of some neonatal critical care conditions but its extrapulmonary effects have not been adequately investigated. We therefore studied the effects of various oxygen concentrations on intestinal epithelial cell function. In order to assess the effects of hyperoxia on the intestinal immunological barrier, we studied two physiological changes in neonatal rats exposed to hyperoxia: the change in intestinal IgA secretory component (SC, an important component of SIgA) and changes in intestinal epithelial cells. Immunohistochemistry and Western blot were used to detect changes in the intestinal tissue SC of neonatal rats. To detect intestinal epithelial cell growth, cells were counted, and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Giemsa staining were used to assess cell survival. Immunohistochemistry was used to determine SC expression. The expression of intestinal SC in neonatal rats under hyperoxic conditions was notably increased compared with rats inhaling room air (P < 0.01). In vitro, 40% O2 was beneficial for cell growth. However, 60% O2 and 90% O2 induced rapid cell death. Also, 40% O2 induced expression of SC by intestinal epithelial cells, whereas 60% O2did not; however, 90% O2 limited the ability of intestinal epithelial cells to express SC. In vivo and in vitro, moderate hyperoxia brought about increases in intestinal SC. This would be expected to bring about an increase in intestinal SIgA. High levels of SC and SIgA would serve to benefit hyperoxia-exposed individuals by helping to maintain optimal conditions in the intestinal tract.
Resumo:
The distal cytoplasmic motifs of leukemia inhibitory factor receptor α-chain (LIFRα-CT3) can independently induce intracellular myeloid differentiation in acute myeloid leukemia (AML) cells by gene transfection; however, there are significant limitations in the potential clinical use of these motifs due to liposome-derived genetic modifications. To produce a potentially therapeutic LIFRα-CT3 with cell-permeable activity, we constructed a eukaryotic expression pcDNA3.0-TAT-CT3-cMyc plasmid with a signal peptide (ss) inserted into the N-terminal that codes for an ss-TAT-CT3-cMyc fusion protein. The stable transfection of Chinese hamster ovary (CHO) cells via this vector and subsequent selection by Geneticin resulted in cell lines that express and secrete TAT-CT3-cMyc. The spent medium of pcDNA3.0-TAT-CT3-cMyc-transfected CHO cells could be purified using a cMyc-epitope-tag agarose affinity chromatography column and could be detected via SDS-PAGE, with antibodies against cMyc-tag. The direct administration of TAT-CT3-cMyc to HL-60 cell culture media caused the enrichment of CT3-cMyc in the cytoplasm and nucleus within 30 min and led to a significant reduction of viable cells (P < 0.05) 8 h after exposure. The advantages of using this mammalian expression system include the ease of generating TAT fusion proteins that are adequately transcripted and the potential for a sustained production of such proteins in vitro for future AML therapy.
Resumo:
The epithelial cells of Panstrongylus megistus male accessory glands (MAG) present ultrastructural characteristics of a secretory cell. Their secretory products are accumulated in the lumen of the four MAG lobes. During the first 8 days of adult life a strong secretion activity occurs, accumulating enough material to produce the first spermatophore. Cerebral neurosecretions as well as juvenile hormone are both involved in MAG secretory activity regulation. Juvenile hormone seems to be the responsible for the stimulation of most protein synthesis in male accessory glands. Cerebral neurosecretion seems to be necessary to stimulate juvenile hormone production and release by the corpus allatum. Furthermore, neurosecretion is required for some polypeptides synthesis by MAG. Although topic application of precocene II to adult males does not reproduce the same effects on MAG as does allatectomy, this compound causes strong reduction on male reproductive capacity.
Resumo:
In the present paper, we developed a primary culture of Rhodnius prolixus salivary gland and main salivary canal cells. Cells remained viable in culture for 30 days. Three types of cells were indentified in the salivary gland cultures, with binuclear cells being the most abundant. The supernatants of salivary cultures contained mainly 16-24 kDa proteins and presented anticoagulant and apyrase activities. Secretion vesicles were observed budding from the cellular monolayer of the main salivary canal cells. These results indicate that R. prolixus salivary proteins may be produced in vitro and suggest that the main salivary canal may have a possible secretory role.
Resumo:
The meristematic endodermis in adventitious roots of Richterago species originates in one of the fundamental meristem cells, which undergo sucessive anticlinal and periclinal divisions to build the inner cortex. The meristematic endodermis or proendodermis remains as a meristematic layer until its differentiation into endodermis, with Casparian strip. When sieve elements differentiate, endodermic secretory canals of esquizogenous origin are present at the region adjacent to primary phloem. Articulated laticifers, with cells perforated at both terminal and transversal walls, also occur during initial phases of secondary development. Presence of inulin as reserve carbohydrate in the inner cortex and vascular tissue may be related to abiotic factors, as an adaptive strategy of these species.
Resumo:
When the first group of DNA puffs is active in the salivary gland regions S1 and S3 of Bradysia hygida larvae, there is a large increase in the production and secretion of new salivary proteins demonstrable by [3H]-Leu incorporation. The present study shows that protein separation by SDS-PAGE and detection by fluorography demonstrated that these polypeptides range in molecular mass from about 23 to 100 kDa. Furthermore, these proteins were synthesized mainly in the S1 and S3 salivary gland regions where the DNA puffs C7, C5, C4 and B10 are conspicuous, while in the S2 region protein synthesis was very low. Others have shown that the extent of amplification for DNA sequences that code for mRNA in the DNA puffs C4 and B10 was about 22 and 10 times, respectively. The present data for this group of DNA puffs are consistent with the proposition that gene amplification is necessary to provide some cells with additional gene copies for the production of massive amounts of proteins within a short period of time (Spradling AC and Mahowald AP (1980) Proceedings of the National Academy of Sciences, USA, 77: 1096-1100).
Resumo:
Nascent procollagen peptides and other secretory proteins are transported across the endoplasmic reticulum (ER) membrane through a protein-conducting channel called translocon. Sec61alpha, a multispanning membrane translocon protein, has been implicated as being essential for translocation of polypeptide chains into the cisterns of the ER. Sec61alpha forms a protein complex with collagen and Hsp47, an ER-resident heat shock protein that binds specifically to collagen. However, it is not known whether Sec61alpha is ubiquitously produced in collagen-producing F9 teratocarcinoma cells or under heat shock treatment. Furthermore, the production and utilization of Sec61alpha may depend on the stage of cell differentiation. Cultured F9 teratocarcinoma cells are capable of differentiation in response to low concentrations of retinoic acid. This differentiation results in loss of tumorigenicity. Mouse F9 cells were grown in culture medium at 37ºC and 43ºC (heat shock treatment) treated or not with retinoic acid, and labeled in certain instances with 35S-methionine. Membrane-bound polysomes of procollagen IV were then isolated. Immunoprecipitation and Western blot analysis were performed using polyclonal antibodies against collagen IV, Hsp47 and Sec61alpha. Under retinoic acid-untreated conditions, F9 cells produced undetectable amounts of Sec61alpha. Sec61alpha, Hsp47 and type IV collagen levels were increased after retinoic acid treatment. Heat shock treatment did not alter Sec61alpha levels, suggesting that Sec61alpha production is probably not affected by heat shock. These data indicate that the enhanced production of Sec61alpha in retinoic acid-induced F9 teratocarcinoma cells parallels the increased synthesis of Hsp47 and collagen type IV.
Resumo:
T84 is an established cell line expressing an enterocyte phenotype whose permeability properties have been widely explored. Osmotic permeability (P OSM), hydraulic permeability (P HYDR) and transport-associated net water fluxes (J W-transp), as well as short-circuit current (I SC), transepithelial resistance (R T), and potential difference (deltaV T) were measured in T84 monolayers with the following results: P OSM 1.3 ± 0.1 cm.s-1 x 10-3; P HYDR 0.27 ± 0.02 cm.s-1; R T 2426 ± 109 omega.cm², and deltaV T 1.31 ± 0.38 mV. The effect of 50 µM 5,6-dichloro-1-ethyl-1,3-dihydro-2H-benzimidazol-2-one (DCEBIO), a "net Cl- secretory agent", on T84 cells was also studied. We confirm the reported important increase in I SC induced by DCEBIO which was associated here with a modest secretory deltaJ W-transp. The present results were compared with those reported using the same experimental approach applied to established cell lines originating from intestinal and renal epithelial cells (Caco-2, LLC-PK1 and RCCD-1). No clear association between P HYDR and R T could be demonstrated and high P HYDR values were observed in an electrically tight epithelium, supporting the view that a "water leaky" barrier is not necessarily an "electrically leaky" one. Furthermore, the modest secretory deltaJ W-transp was not consistent with previous results obtained with RCCD-1 cells stimulated with vasopressin (absorptive fluxes) or with T84 cells secreting water under the action of Escherichia coli heat stable enterotoxin. We conclude that, while the presence of aquaporins is necessary to dissipate an external osmotic gradient, coupling between water and ion transport cannot be explained by a simple and common underlying mechanism.
Resumo:
The pancreatic acinar cell is a classical model for studies of secretion and signal transduction mechanisms. Because of the extensive endoplasmic reticulum and the large granular compartment, it has been possible - by direct measurements - to obtain considerable insights into intracellular Ca2+ handling under both normal and pathological conditions. Recent studies have also revealed important characteristics of stimulus-secretion coupling mechanisms in isolated human pancreatic acinar cells. The acinar cells are potentially dangerous because of the high intra-granular concentration of proteases, which become inappropriately activated in the human disease acute pancreatitis. This disease is due to toxic Ca2+ signals generated by excessive liberation of Ca2+ from both the endoplasmic reticulum and the secretory granules.