51 resultados para second order calibration uncertainty
em Scielo Saúde Pública - SP
Resumo:
The most widespread literature for the evaluation of uncertainty - GUM and Eurachem - does not describe explicitly how to deal with uncertainty of the concentration coming from non-linear calibration curves. This work had the objective of describing and validating a methodology, as recommended by the recent GUM Supplement approach, to evaluate the uncertainty through polynomial models of the second order. In the uncertainty determination of the concentration of benzatone (C) by chromatography, it is observed that the uncertainty of measurement between the methodology proposed and Monte Carlo Simulation, does not diverge by more than 0.0005 unit, thus validating the model proposed for one significant digit.
Resumo:
The validation of an analytical procedure must be certified through the determination of parameters known as figures of merit. For first order data, the acuracy, precision, robustness and bias is similar to the methods of univariate calibration. Linearity, sensitivity, signal to noise ratio, adjustment, selectivity and confidence intervals need different approaches, specific for multivariate data. Selectivity and signal to noise ratio are more critical and they only can be estimated by means of the calculation of the net analyte signal. In second order calibration, some differentes approaches are necessary due to data structure.
Resumo:
Three different periods may be considered in the evolution of knowledge about the clinical and epidemiological aspects of Chagas disease since its discovery: (a) early period concerning the studies carried out by Carlos Chagas in Lassance with the collaboration of other investigators of the Manguinhos School. At that time the disease was described and the parasite, transmitters and reservoirs were studied. The coexistence of endemic goiter in the same region generated some confusion about the clinical forms of the disease; (b) second period involving uncertainty and the description of isolated cases, which lasted until the 1940 decade. Many acute cases were described during this period and the disease was recognized in many Latin American countries. Particularly important were the studies of the Argentine Mission of Regional Pathology Studies, which culminated with the description of the Romaña sign in the 1930 decade, facilitating the diagnosis of the early phase of the disease. However, the chronic phase, which was the most important, continued to be difficult to recognize; (c) period of consolidation of knowledge and recognition of the importance of Chagas disease. Studies conducted by Laranja, Dias and Nóbrega in Bambuí updated the description of Chagas heart disease made by Carlos Chagas and Eurico Villela. From then on, the disease was more easily recognized, especially with the emphasis on the use of a serologic diagnosis; (d) period of enlargement of knowledges on the disease. The studies on denervation conducted in Ribeirão Preto by Fritz Köberle starting in the 1950 decade led to a better understanding of the relations between Chagas disease and megaesophagus and other visceral megas detected in endemic areas.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
Infinity readings for first order kinetics can be calculated from any three measurements (triads) of a physical property l at three equallyspaced times. Accurate results can be obtained from time intervals aslow as 0.4 half-life. Calculation of infinity readings l¥ from severaltriads at increasing values of time gives an insight into the deviation of the first order kinetics when parallel, consecutive or other spurious reactions occur along with the main first order reaction, not allowing direct measurements or calculation of l¥. The proposed method is more sensitive in distinguishing between first and second order kinetics than the Guggenheim and Kezdy-Swinbourne methods.
Resumo:
A multivariate curve resolution method, "GENERALIZED RANK ANNIHILATION METHOD (GRAM)", is discussed and tested with simulated and experimental data. The analysis of simulated data provides general guidelines concerning the condition for uniqueness of a solution for a given problem. The second-order emission-excitation spectra of human and animal dental calculus deposits were used as an experimental data to estimate the performance of the above method. Three porphyrinic spectral profiles, for both human and cat, were obtained by the use of GRAM.
Resumo:
Calculation of uncertainty of results represents the new paradigm in the area of the quality of measurements in laboratories. The guidance on the Expression of Uncertainty in Measurement of the ISO / International Organization for Standardization assumes that the analyst is being asked to give a parameter that characterizes the range of the values that could reasonably be associated with the result of the measurement. In practice, the uncertainty of the analytical result may arise from many possible sources: sampling, sample preparation, matrix effects, equipments, standards and reference materials, among others. This paper suggests a procedure for calculation of uncertainties components of an analytical result due to sample preparation (uncertainty of weights and volumetric equipment) and instrument analytical signal (calibration uncertainty). A numerical example is carefully explained based on measurements obtained for cadmium determination by flame atomic absorption spectrophotometry. Results obtained for components of total uncertainty showed that the main contribution to the analytical result was the calibration procedure.
Resumo:
Mercury (II) adsorption studies in top soils (top 10 cm) from the Rio Negro basin show this process depends strongly on some selected parameters of the aqueous phase in contact with the soils. Maximum adsorption occurred in the pH range 3.0-5.0 (>90%). Dissolved organic matter shows an inhibitory effect on the availability of Hg (II) to be adsorbed by the soils, whereas a higher chloride content of the solution resulted in a lower adsorption of Hg (II) at pH 5.0. Soils with higher organic matter content were less affected by changes in the salinity. An increase in the initial Hg (II) concentration increased the amount of Hg (II) adsorbed by the soil and decreased the time needed to reach equilibrium. A Freundlich isotherm provided a good model for Hg (II) adsorption in the two types of soil studied. The kinetics of Hg (II) adsorption on Amazonian soils showed to be very fast and followed pseudo-second order kinetics. An environmental implication of these results is discussed under the real scenario present in the Negro River basin, where acidic waters are in contact with a soil naturally rich in mercury.
Resumo:
The adsorption of Cu(II) ions from aqueous solution by chitosan using a column in a closed hydrodynamic flow system is described. The adsorption capacities as a function of contact time of copper(II) ions and chitosan were determined by varying the ionic strength, temperature and the flow of the metal solution. The Langmuir model reproduced the adsorption isothermal data better than the Freundlich model. The experimental kinetic data correlate properly with the second-order kinetic reaction for the whole set of experimental adsorption conditions. The rate constants exercise great influence on the time taken for equilibrium to be established by complexation or electrostatic interaction between the amino groups of chitosan and the metal.
Resumo:
We make several simulations using the Monte Carlo method in order to obtain the chemical equilibrium for several first-order reactions and one second-order reaction. We study several direct, reverse and consecutive reactions. These simulations show the fluctuations and relaxation time and help to understand the solution of the corresponding differential equations of chemical kinetics. This work was done in an undergraduate physical chemistry course at UNIFIEO.
Resumo:
The aim of this work is to evaluate the use of natural zeolites to remove the NH4+ that remains in effluents from swine facilities which were submitted to physico-chemical and biological treatments. Experiments were made in batch made adding 5% (w/w) of adsorbent (0.6-1.3 and 3.0-8.0 mm) to synthetic and real swine facilities effluents. The results show that ammonium removal is influenced by adsorbent particle size and the presence of other ions in the effluent. The adsorption equilibrium was described by Langmuir as well as Freundlich isotherms and the kinetic data fitted well a pseudo-second order model.
Resumo:
In this work, a new adsorbent was prepared by microencapsulation of sulfoxine into chitosan microspheres by the spray drying technique. The new adsorbent was characterized by Raman spectroscopy, scanning electron microscopy and microanalysis of energy dispersive X-rays. The Cu(II) adsorption was studied as a function of pH, time and concentration. The optimum pH was found to be 6.0. The kinetic and equilibrium data showed that the adsorption process followed the pseudo second-order kinetic model and the Langmuir isotherm model over the entire concentration range. An increase of 8.0% in the maximum adsorption capacity of the adsorbent (53.8 mg g-1) was observed as compared to chitosan glutaraldehyde cross-linked microspheres.
Resumo:
The structural and surface properties of reticulated vitreous carbon (RVC) were discussed as a function of its heat treatment temperature (HTT), for samples produced in the range from 700 to 2000 ºC, using the furfuryl precursor resin. The samples were analyzed by x-ray photoelectron spectroscopy, first and second order Raman scattering as well as electrochemical response. Exploring the material turbostraticity concept, the interdependence between the RVC chemical surface variation and its defects were demonstrated. The influence of heteroatom presence was discussed in the material ordering for HTT lower than 1300 ºC while the graphitization process evolution was also pointed out for HTT higher than 1500 ºC.
Resumo:
Batch sorption experiments were carried out to remove methylene blue from its aqueous solutions using zeolites synthesized from fly ashes as an adsorbent. The adsorbents were characterized by XFR, XRD and SEM. Nearly 90 min of contact time are found to be sufficient for the adsorption of dye to reach equilibrium. Equilibrium data have been analyzed using Langmuir and Freundlich isotherms and the results were found to be well represented by the Freundlich isotherm equation. Adsorption data were fitted to both Lagergren first-order and pseudo-second-order kinetic models and the data were found to follow pseudo-second-order kinetics.
Resumo:
The adsorption kinetics of phosphate on Nb2O5.nH2O was investigated at initial phosphate concentrations 0.25, 0.50 and 1.00 mg.L-1. The kinetic process was described by a pseudo-second-order rate model very well. The adsorption thermodynamics was carried out at 298, 308, 318, 328 and 338 K. The positive values of both ΔH and ΔS suggest an endothermic reaction and increase in randomness at the solid-liquid interface during the adsorption. ΔG values obtained were negative indicating a spontaneous adsorption process. The Langmuir model described the data better than the Freundlich isotherm model. The effective desorption could be achieved using water at pH 12.