28 resultados para rotary tiller
em Scielo Saúde Pública - SP
Resumo:
Soil tillage is a process that accelerates soil organic matter decomposition transferring carbon to atmosphere, mainly in the CO2 form. In this study, the effect of rotary tillage on soil CO2 emission was investigated, including the presence of crop residues on the surface.Emissions were evaluated during 15 days after tillage in 3 plots: 1) non-tilled and without crop residues on soil surface (NTwo), 2) rotary tiller without the presence of crop residues on soil surface (RTwo), and 3) rotary tiller with the presence of crop residues in soil surface (RTw). Emissions from the RTw plot were higher than the other plots, (0.777 g CO2 m-2 h-1), with the lowest emissions recorded in the NTwo plot (0.414 g CO2 m-2 h-1). Total emission indicates that the difference of C-CO2 emitted to atmosphere corresponds to 3% of the total additional carbon in the crop residues in the RTw plot compared to RTwo. The increase in the RTwo emission in comparison to NTwo was followed by changes in the aggregate size distribution, especially those with average diameter lower than 2 mm. The increase in emission from the RTw plot in relation to RTwo was related to a decrease in crop residue mass on the surface, and its higher fragmentation and incorporation in soil. When the linear correlation between soil CO2 emission, and soil temperature and soil moisture is considered, only the RTw treatment showed significant correlation (p<0.05) with soil moisture.
Resumo:
The wear resistance of rotary plows operating in a clay loam soil was studied. The degree of damage caused to the soil and the amount of mass lost by the tools were determined in order to establish correlations between the physical properties of the soil and the wear mechanisms acting on the tribosystem. Field tests were carried out in 12 plots and a randomized experimental design with 4 levels, 3 replicas per level and 2 passes per plot was applied. The levels relate to the tillage implements employed: rotary tiller, rotary power harrow, small motorized rotary tiller and control (unaltered soil). The highest mass losses were measured in rotary tiller and rotary power harrow's tools, while the small motorized rotary tiller's tools showed generally lower levels of damage. It was determined that the effective contact time between tool and soil, the rotating speed and the sudden impact forces are the most significant factors affecting the wear resistance in field operations. Thirty days after tillage operation the soil samples were taken from each plot at a mean depth of 100 mm in order to determine bulk density, gravimetric moisture content and percentage of aggregates smaller than 5 mm. No significant differences among the values of these properties were found in the experiments. The wear mechanisms acting on the tools' surface are complex and include 2-body and 3-body abrasion as well as the presence of sudden impact forces.
Resumo:
The tropical tree Schizolobium amazonicum is native from the Amazonian forest, naturally occurring in Brazil, Peru and Colombia. This work aimed to study the veneer yield made from this species. For this purpose, 50 logs from S. amazonicum were rotary peeled in a plywood industry installed in Brazilian Amazon region. The results indicated that S. amazonicum had a peeling yield similar or even higher than those usually obtained for species traditionally used for this purpose in Brazil, like those of Pinus and Eucalyptus. It was also observed that the dendrometric parameters of the log can be used to estimate the peeling yield in this species.
Resumo:
The objective of this study was to evaluate the occurrence of the tiller size/density compensation mechanism in Tifton 85 bermudagrass swards grazed by sheep under continuous stocking. Treatments corresponded to four sward steady state conditions (5, 10, 15, and 20 cm of sward surface height), maintained by sheep grazing. The experimental design was a complete randomized block with four replicates. Pasture responses evaluated include: tiller population density, tiller mass, leaf mass and leaf area per tiller, and herbage mass. Tiller volume, leaf area index, tiller leaf/stem ratio, and tiller leaf area/volume ratio were calculated and simple regression analyses between tiller population density and tiller mass were performed. Measurements were made in December, 1998, and January, April, and July, 1999. The swards showed a tiller size/density compensation mechanism in which high tiller population densities were associated with small tillers and vice-versa, except in July, 1999. Regression analyses revealed that linear coefficients were steeper than the theoretical expectation of -3/2. Increments in herbage mass were attributable to increases in tiller mass in December and January. Leaf area/volume ratio values of Tifton 85 tillers were much lower than those commonly found for temperate grass species.
Resumo:
Studies of plant responses to defoliation are important to develop pasture management strategies. The objective of this study was to evaluate the population density of basal, aerial and reproductive tillers, tiller appearance and mortality rates, forage accumulation and sward structure in Marandu grass pastures under different grazing intensities. The experimental period was from January to June 2006, divided in three seasons: summer, autumn and winter. The pastures were continuously grazed using variable stocking rates. The grazing intensities corresponded to 15, 30 and 45 cm of sward height. The experiment was arranged in a complete randomized block design with three treatments and two replicates. The sward heights were measured twice a week. The response variables were: forage accumulation, forage mass and its morphological components; and population densities of basal (TPDb), aerial (TPDa) and reproductive (TPDr) tillers. The highest TPDb (P > 0.05) was recorded for the shortest sward pasture, and the highest TPDr (P<0.05) for the tallest sward pasture. Swards showed a tiller size/density compensation mechanism and, consequently, the forage accumulation was similar (P > 0.05) among the grazing intensities. Pasture with a sward height of 35 cm had 94% of sun light interception. The highest variations in forage accumulation and sward structure were more influenced by seasonal differences than by grazing intensities. Pastures of Marandu grass showed large flexibility in grazing management, which allowed it to be maintained at sward heights between 15 and 35 cm.
Resumo:
The silvopastoral system is a viable technological alternative to extensive cattle grazing, however, for it to be successful, forage grass genotypes adapted to reduced light need to be identified. The objective of this study was to select progenies of Panicum maximum tolerant to low light conditions for use in breeding programs and to study the genetic control and performance of some traits associated with shade tolerance. Six full-sib progenies were evaluated in full sun, 50% and 70% of light reduction in pots and subjected to cuttings. Progeny genotypic values (GV) increased with light reduction in relation to plant height (H) and specific leaf area (SLA). The traits total dry mass accumulation (DM) and leaf dry mass accumulation (LDM) had GV higher in 50% shade and intermediate in 70% shade. The GV of tiller number (TIL) and root dry mass accumulation (RDM) decreased with light reduction. The highest positive correlations were obtained for the traits H and RDM with SLA and DM; the highest negative correlations were between TIL and SLA and RDM, and H and LDM. The progenies showed higher tolerance to 50% light reduction and, among them, two stood out and will be used in breeding programs. It was also found that it is not necessary to evaluate some traits under all light conditions. All traits had high broad sense heritability and high genotypic correlation between progenies in all light intensities. There is genetic difference among the progenies regarding the response to different light intensities, which will allow selection for shade tolerance
Resumo:
AbstractINTRODUCTION:Chamomile ( Chamaemelum nobile ) is widely used throughout the world, and has anti-inflammatory, deodorant, bacteriostatic, antimicrobial, carminative, sedative, antiseptic, anti-catarrhal, and spasmolytic properties. Because of the increasing incidence of drug-resistant bacteria, the development of natural antibacterial sources such as medical herbs for the treatment of infectious diseases is necessary. Extracts from different plant parts such as the leaves, flowers, fruit, and bark of Combretum albiflorum, Laurus nobilis , and Sonchus oleraceus were found to possess anti-quorum sensing (QS) activities. In this study, we evaluated the effect of C. nobile against Pseudomonas aeruginosa biofilm formationMETHODS:The P. aeruginosa samples were isolated from patients with different types of infection, including wound infection, septicemia, and urinary tract infection. The flowers of C. nobile were dried and the extract was removed using a rotary device and then dissolved in dimethyl sulfoxide at pH 7.4. The microdilution method was used to evaluate the minimum inhibitory concentration (MIC) of this extract on P. aeruginosa , and biofilm inhibition was assayed.RESULTS:Eighty percent of the isolated samples (16/20) could form a biofilm, and most of these were isolated from wound infections. The biofilm inhibitory concentration of the C. nobile extract was 6.25-25mg/ml, whereas the MIC was 12.5-50mg/ml.CONCLUSIONS:The anti-QS property of C. nobile may play an important role in its antibacterial activity, thus offering an additional strategy in the fight against bacterial infections. However, molecular investigation is required to explore the exact mechanisms of the antibacterial action and functions of this phytocompound.
Resumo:
In the present study, different aerial parts from twelve Amazonian plant species found in the National Institute for Amazon Research's (INPA's) Adolpho Ducke Forest Reserve (in Manaus, Amazonas, Brazil) were collected. Separate portions of dried, ground plant materials were extracted with water (by infusion), methanol and chloroform (by continuous liquid-solid extraction) and solvents were removed first by rotary evaporation, and finally by freeze-drying which yielded a total of seventy-one freeze-dried extracts for evaluation. These extracts were evaluated initially at concentrations of 500 and 100 µg/mL for in vitro hemolytic activity and in vitro inhibition of platelet aggregation in human blood, respectively. Sixteen extracts (23 % of all extracts tested, 42 % of all plant species), representing the following plants: Chaunochiton kappleri (Olacaceae), Diclinanona calycina (Annonaceae), Paypayrola grandiflora (Violaceae), Pleurisanthes parviflora (Icacinaceae), Sarcaulus brasiliensis (Sapotaceae), exhibited significant inhibitory activity towards human platelet aggregation. A group of extracts with antiplatelet aggregation activity having no in vitro hemolytic activity has therefore been identified. Three extracts (4 %), all derived from Elaeoluma nuda (Sapotaceae), exhibited hemolytic activity. None of the plant species in this study has known use in traditional medicine. So, these data serve as a baseline or minimum of antiplatelet and hemolytic activities (and potential usefulness) of non-medicinal plants from the Amazon forest. Finally, in general, these are the first data on hemolytic and inhibitory activity on platelet aggregation for the genera which these plant species represent.
Resumo:
Soils of the coastal plains of Rio Grande do Sul, Brazil, are affected by salinization, which can hamper the establishment and development of crops in general, including rice. The application of high doses of KCl may aggravate the crop damage, due to the high saline content of this fertilizer. This study aimed to evaluate the effect of K fertilizer management on some properties of rice plant, grown in soils with different sodicity levels, and determine which attribute is best related to yield. The field study was conducted in four Albaqualfs with exchangeable Na percentages of 5.6, 9.0, 21 and 32 %. The management of KCl fertilizer consisted of the application of 90 kg ha-1 K2O broadcast, 90 kg ha-1 K2O in the row and 45 kg ha-1 K2O in the row + 45 kg ha-1 K2O at panicle initiation (PI). Plant density, dry matter evolution, height, SPAD (Soil Plant Analysis Development value indicating relative chlorophyll contents) index, tiller mass, 1,000-grain weight, panicle length and grain yield were evaluated. The plant density was damaged by application of K fertilizer in the row, especially at full dose (90 kg ha-1), at three sodicity levels, resulting in loss in biomass accumulation in later stages, affecting the crop yield, even at the lowest level of soil sodicity (5.6 %). All properties were correlated with yield; the highest positive correlation was found with plant density and shoot dry matter at full flowering, and a negative correlation with panicle length.
Resumo:
Among the production factors, adequate fertilization is an important tool to raise the productivity of pastoral systems and consequently increase the share of Brazil in the supply chain of primary agricultural products at the global level. The objective of this study was to evaluate the interaction of nitrogen and sulfur fertilization in BRACHIARIA DECUMBENS: Stapf. The experiment in pots with Dystrophic Oxisol was evaluated in a completely randomized design with four replications in a 5 x 3 factorial arrangement, involving five N doses (0, 100, 200, 400, and 800 mg dm-3) in the form of ammonium nitrate and three S doses (0, 20 and 80 mg dm-3) in the form of calcium sulfate, with a total of 15 treatments. In the treatments with low S dose, calcium was provided as calcium chloride, to ensure a homogeneous Ca supply in all treatments. The results showed that the tiller production and dry weight of green leaves and of stems + sheaths and total dry weight were favored by the combination of N and S fertilizer, while the proportion of dry leaves was reduced. Nitrogen fertilization raised the N contents in green leaves and stems + sheaths and reduced K contents in fresh and dry leaves. The response to S rates in the N content of green leaves was quadratic.
Resumo:
ABSTRACT The removal of thick layers of soil under native scrubland (Cerrado) on the right bank of the Paraná River in Selvíria (State of Mato Grosso do Sul, Brazil) for construction of the Ilha Solteira Hydroelectric Power Plant caused environmental damage, affecting the revegetation process of the stripped soil. Over the years, various kinds of land use and management systems have been tried, and the aim of this study was to assess the effects of these attempts to restore the structural quality of the soil. The experiment was conducted considering five treatments and thirty replications. The following treatments were applied: stripped soil without anthropic intervention and total absence of plant cover; stripped soil treated with sewage sludge and planted to eucalyptus and grass a year ago; stripped soil developing natural secondary vegetation (capoeira) since 1969; pastureland since 1978, replacing the native vegetation; and soil under native vegetation (Cerrado). In the 0.00-0.20 m layer, the soil was chemically characterized for each experimental treatment. A 30-point sampling grid was used to assess soil porosity and bulk density, and to assess aggregate stability in terms of mean weight diameter (MWD) and geometric mean diameter (GMD). Aggregate stability was also determined using simulated rainfall. The results show that using sewage sludge incorporated with a rotary hoe improved the chemical fertility of the soil and produced more uniform soil pore size distribution. Leaving the land to develop secondary vegetation or turning it over to pastureland produced an intermediate level of structural soil quality, and these two treatments produced similar results. Stripped soil without anthropic intervention was of the lowest quality, with the lowest values for cation exchange capacity (CEC) and macroporosity, as well as the highest values of soil bulk density and percentage of aggregates with diameter size <0.50 mm, corroborated by its lower organic matter content. However, the percentage of larger aggregates was higher in the native vegetation treatment, which boosted MWD and GMD values. Therefore, assessment of some land use and management systems show that even decades after their implementation to mitigate the degenerative effects resulting from the installation of the Hydroelectric Plant, more efficient approaches are still required to recover the structural quality of the soil.
Resumo:
The main scope of this work was to detect (Panicum maximum Jacq.) genotype differences as to morphoagronomic and seed quality indices, and to establish character correlations useful for determining vegetative and reproductive trends. Besides the flowering cycle, eight phenological and two seed quality traits were scored in a greenhouse randomized complete block experiment, as follows: plant height (PH), reproductive tiller number/overall tiller number (RTN/OTN), panicle number/reproductive tillers (PN/RT), leaf length (LL), leaf width (LW), panicle length (PL), fresh weight (FW), dry weight (DW), number of seeds/g (NS/G) and seed sample physical purity (SPP). Very-early and early-flowering hybrids consistently showed the highest correlation values among flowering cycle and RTN/OTN (r = -0.59**), PN/RT (r = -0.48**), NS/G (r = -0.88**) and SPP (r = -0.80**) (reproductive parameters) while intermediate and late-flowering hybrids presented the highest values for LL (r = 0.53**), LW (r = 0.60**), PL (r = 0.77**), FW (r = 0.78**) and DW (r = 0.85**) (vegetative traits). The implications of these results for plant breeding and forage management purposes are discussed.
Resumo:
The objective of this work was to evaluate the effect of grazing interval and period of evaluation over tissue turnover in Tanzania grass pastures (Panicum maximum cv. Tanzania) and to ascertain if herbage accumulation rate can be used as a criterion to establish a defoliation schedule for this grass in Southeast of Brazil. A randomized block design with a split-plot arrangement was used. The effect of three grazing intervals was evaluated within seven periods between October 1995 and September 1996. Responses monitored were leaf and stem elongation rates, leaf senescence rate, stem length, and tiller density. Net herbage accumulation rate was calculated using tissue turnover data. The grazing intervals for Tanzania grass should be around 38 days between October and April (spring and early autumn) and 28 days during the reproductive phase of the grass (April/May). Between May and September (late autumn and winter), grazing interval should be around 48 days. Herbage accumulation rate is not a good criterion to establish defoliation time for Tanzania grass. Studies on the effects of stem production in grazing efficiency, animal intake and forage quality are needed to improve Tanzania grass management.
Resumo:
The objective of this study was to evaluate potato plant growth and macronutrient uptake, as affected by soil tillage methods, in sprinkle and drip irrigated experiments. Eight treatments were set: T1, no tillage, except for furrowing before planting; T2, one subsoiling (SS); T3, twice rotary hoeing (RH); T4, one disc plowing (DP) + twice disc harrow leveling (DL); T5, 1DP + 2DL + 1RH; T6, 1DP + 2DL + 2RH; T7, 1SS + T6; T8, one moldboard plowing (MP) + 2DL. Treatments were arranged in a randomized block design with four replications. In both irrigation systems, plants presented higher emergence velocity index (EVI), when the soil was not tillaged, and the EVI was inversely related to the maximum tuber dry mass production. In both experiments, a functional direct relationship was found between the leaf area index and maximum tuber dry mass yield. The growth of plant organs (tuber, leaf, stem and root) and the macronutrient (N, P, K, Ca and Mg) contents in potato plant responded positively to a deeper soil revolving caused by plowing, especially with moldboard plow.
Resumo:
The objective of this work was to assess the potential of three isolates of arbuscular mycorrhizal fungi to promote growth of micropropagated plantlets of Tapeinochilos ananassae during acclimatization. The experiment was carried out in greenhouse, in a completely randomized block design, with four inoculation treatments: non‑inoculated control and plants inoculated with Glomus etunicatum, Acaulospora longula or Gigaspora albida, with ten replicates. After 90 days, the following parameters were evaluated: survival rate, height, leaf and tiller number, leaf area, fresh and dry biomass, contents of macro‑ and micronutrients in the root and shoot, glomerospore number, and mycorrhizal colonization. The survival percentage was 100%, except for plants inoculated with G. albida (80%). The isolate G. etunicatum is more suitable for plant development, since it improves survival, growth, dry matter production, nutritional status, and vigor of T. ananassae micropropagated plants.