34 resultados para regularly entered default judgment set aside without costs

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The adequate way of neutralizing the Dutch disease is the imposition of a variable tax on the export of the commodity that originates the disease. If such tax is equivalent to the "size" of the Dutch disease, it will shifts to the right its supply curve of the commodity in relation to the exchange rate, giving the existing domestic supply and the international demand, the exchange rate will depreciate at the value of the tax, and the equilibrium exchange rate will move from the "current" to the "industrial" equilibrium.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Phosphate "fixation" is the convertion of soluble into insoluble phosphate in the soil. There are many factors conditioning phosphate fixation by soil such as reactions originating less soluble compounds (phosphates of iron, aluminum, calcium, magnesium, etc.), PO4-3 adsorption by the colloidal fraction of soils, PO4-3 absorption by the soil microflora, etc. Certain soils of the state of São Paulo (Brazil) are relatively rich in both iron and aluminum oxides. PO4-3 fixation, using P31 and P32 has been verified by researchers, specially with "Terra Roxa". The known methods for fixation evaluation are conventional as this depends on phosphate solution concentration, pH, time of contact between soil and solution, relation of sample weight to solution volume, shaking time, etc. In this experiment, the following conventional method was used: 4 g of soil were shaken for 15 minutes at 30-40 rpm, in 300 ml Erlenmeyer flask in a Wagner shaking machine, together with 100 ml of 0,03 normal phosphate solution (being 0,01 normal as PO4-3 contributed by H8PO4 and 0,02 normal as PO4-3 from KH2PO4). After shaking it was set aside for 24 hours and then filtered. Phosphate was determined in a suitable aliquot of both the original solution (blank) and the soil extract, by the vanadomolibidic-phosphoric acid method. From phosphate concentration in the blank minus phosphate concentration in the soil stract the rate of fixation by 100 g of soil was calculated. The data obtained show that "Terra Roxa" and "Terra Roxa Misturada" have a fairly high PO4-3 fixation capacity, varying from 10 to 24 milliequivalents of PO4-3 per 100 g of soil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To estimate the direct costs of schizophrenia for the public sector. METHODS: A study was carried out in the state of São Paulo, Brazil, during 1998. Data from the medical literature and governmental research bodies were gathered for estimating the total number of schizophrenia patients covered by the Brazilian Unified Health System. A decision tree was built based on an estimated distribution of patients under different types of psychiatric care. Medical charts from public hospitals and outpatient services were used to estimate the resources used over a one-year period. Direct costs were calculated by attributing monetary values for each resource used. RESULTS: Of all patients, 81.5% were covered by the public sector and distributed as follows: 6.0% in psychiatric hospital admissions, 23.0% in outpatient care, and 71.0% without regular treatment. The total direct cost of schizophrenia was US$191,781,327 (2.2% of the total health care expenditure in the state). Of this total, 11.0% was spent on outpatient care and 79.2% went for inpatient care. CONCLUSIONS: Most schizophrenia patients in the state of São Paulo receive no regular treatment. The study findings point out to the importance of investing in research aimed at improving the resource allocation for the treatment of mental disorders in Brazil.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To analyze the costs of vaccination regimens for introducing inactivated polio vaccine in routine immunization in Brazil.METHODS A cost analysis was conducted for vaccines in five vaccination regimens, including inactivated polio vaccine, compared with the oral polio vaccine-only regimen. The costs of the vaccines were estimated for routine use and for the “National Immunization Days”, during when the oral polio vaccine is administered to children aged less than five years, independent of their vaccine status, and the strategic stock of inactivated polio vaccine. The presented estimated costs are of 2011.RESULTS The annual costs of the oral vaccine-only program (routine and two National Immunization Days) were estimated at US$19,873,170. The incremental costs of inclusion of the inactivated vaccine depended on the number of vaccine doses, presentation of the vaccine (bottles with single dose or ten doses), and number of “National Immunization Days” carried out. The cost of the regimen adopted with two doses of inactivated vaccine followed by three doses of oral vaccine and one “National Immunization Day” was estimated at US$29,653,539. The concomitant replacement of the DTPw/Hib and HepB vaccines with the pentavalent vaccine enabled the introduction of the inactivated polio without increasing the number of injections or number of visits needed to complete the vaccination.CONCLUSIONS The introduction of the inactivated vaccine increased the annual costs of the polio vaccines by 49.2% compared with the oral vaccine-only regimen. This increase represented 1.13% of the expenditure of the National Immunization Program on the purchase of vaccines in 2011.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractBackground:Cardiovascular disease is a leading cause of death in the world and in Brazil. Myocardial scintigraphy is an important noninvasive method for detecting ischemia in symptomatic patients, but its use in asymptomatic ones or those with atypical symptoms is yet to be defined.Objective:To verify the presence of major cardiac events in asymptomatic patients or those with atypical symptoms (atypical chest pain or dyspnea) that underwent myocardial scintigraphy (MS), over a period of 8 years. Secondary objectives were to identify cardiac risk factors associated with myocardial scintigraphy abnormalities and possible predictors for major cardiac events in this group.Methods:This was a retrospective, observational study using the medical records of 892 patients that underwent myocardial scintigraphy between 2005 and 2011 and who were followed until 2013 for assessment of major cardiac events and risk factors associated with myocardial scintigraphy abnormalities. Statistical analysis was performed by Fisher’s exact test, logistic regression and Kaplan-Meyer survival curves, with statistical significance being set at p ≤ 0.05.Results:Of the total sample, 52.1% were men, 86.9% were hypertensive, 72.4% had hyperlipidemia, 33.6% were diabetic, and 12.2% were smokers; 44.5% had known coronary artery disease; and 70% had high Framingham score, 21.8% had moderate and 8% had low risk. Of the myocardial scintigraphies, 58.6% were normal, 26.1% suggestive of fibrosis and 15.3% suggestive of ischemia. At evolution, 13 patients (1.5%) had non-fatal myocardial infarction and six individuals (0.7%) died. The group with normal myocardial scintigraphy showed longer period of time free of major cardiac events, non-fatal myocardial infarction (p = 0.036) and death. Fibrosis in the myocardial scintigraphy determined a 2.4-fold increased risk of non-fatal myocardial infarction and five-fold higher risk of death (odds ratio: 2.4 and 5.7, respectively; p = 0.043).Conclusion:The occurrence of major cardiac events in 8 years was small. Patients with fibrosis at MS had more major events, whereas patients with normal MS result had fewer major cardiac events, with higher survival.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AbstractBackground:Acute coronary syndrome (ACS) is defined as a “group of clinical symptoms compatible with acute myocardial ischemia”, representing the leading cause of death worldwide, with a high clinical and financial impact. In this sense, the development of economic studies assessing the costs related to the treatment of ACS should be considered.Objective:To evaluate costs and length of hospital stay between groups of patients treated for ACS undergoing angioplasty with or without stent implantation (stent+ / stent-), coronary artery bypass surgery (CABG) and treated only clinically (Clinical) from the perspective of the Brazilian Supplementary Health System (SHS).Methods:A retrospective analysis of medical claims of beneficiaries of health plans was performed considering hospitalization costs and length of hospital stay for management of patients undergoing different types of treatment for ACS, between Jan/2010 and Jun/2012.Results:The average costs per patient were R$ 18,261.77, R$ 30,611.07, R$ 37,454.94 and R$ 40,883.37 in the following groups: Clinical, stent-, stent+ and CABG, respectively. The average costs per day of hospitalization were R$ 1,987.03, R$ 4,024.72, R$ 6,033.40 and R$ 2,663.82, respectively. The average results for length of stay were 9.19 days, 7.61 days, 6.19 days and 15.20 days in these same groups. The differences were significant between all groups except Clinical and stent- and between stent + and CABG groups for cost analysis.Conclusion:Hospitalization costs of SCA are high in the Brazilian SHS, being significantly higher when interventional procedures are required.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A 0.125 degree raster or grid-based Geographic Information System with data on tsetse, trypanosomosis, animal production, agriculture and land use has recently been developed in Togo. This paper addresses the problem of generating tsetse distribution and abundance maps from remotely sensed data, using a restricted amount of field data. A discriminant analysis model is tested using contemporary tsetse data and remotely sensed, low resolution data acquired from the National Oceanographic and Atmospheric Administration and Meteosat platforms. A split sample technique is adopted where a randomly selected part of the field measured data (training set) serves to predict the other part (predicted set). The obtained results are then compared with field measured data per corresponding grid-square. Depending on the size of the training set the percentage of concording predictions varies from 80 to 95 for distribution figures and from 63 to 74 for abundance. These results confirm the potential of satellite data application and multivariate analysis for the prediction, not only of the tsetse distribution, but more importantly of their abundance. This opens up new avenues because satellite predictions and field data may be combined to strengthen or substitute one another and thus reduce costs of field surveys.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To identify the direct cost of procedures related to an outpatient chemotherapy treatment for women with breast cancer. Method: This is a quantitative research, using the case study methodology, performed in an outpatient chemotherapy of a private hospital. The total cost was calculated by multiplying the time spent by professionals involved in therapeutic procedures, the unit cost of direct labor, adding to the cost of materials, drugs and solutions. For performing the calculations, we used the Brazilian currency (R$). Results: The average total cost per chemotherapy session corresponded to R$ 1,783.01 (100%), being R$ 1,671.66 (93,75%) spent with drugs, R$ 74,98 (4.21%) with materials, R$ 28.49 (1.60%) with labor and R$ 7.88 (0.44%) with solutions. Conclusion: The results may support discussions and decision making for the management of costs related to chemotherapy aimed at reducing expenses and eliminating waste without harm to the care provided. 


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The authors describe a surgical technique which allows, without increasing costs, to perform laparoscopic cholecystectomy with a single incision, without using specific materials and with better surgical ergonomics. The technique consists of a longitudinal umbilical incision, navel detachment, use of a permanent 10mm trocar and two clamps directly and bilaterally through the aponeurosis without the use of 5mm trocars, transcutaneous gallbladder repair with straight needle cotton suture, ligation with unabsorbable suture and umbilical incision for the specimen extraction. The presented technique enables the procedure with conventional and permanent materials, improving surgical ergonomics, with safety and aesthetic advantages.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Prediction of variety composite means was shown to be feasible without diallel crossing the parental varieties. Thus, the predicted mean for a quantitative trait of a composite is given by: Yk = a1 sigmaVj + a2sigmaTj + a3 - a4, with coefficients a1 = (n - 2k)/k²(n - 2); a2 = 2n(k - 1)/k²(n - 2); a3 = n(k - 1)/k(n - 1)(n - 2); and a4 = n²(k - 1)/k(n - 1)(n - 2); summation is for j = 1 to k, where k is the size of the composite (number of parental varieties of a particular composite) and n is the total number of parent varieties. Vj is the mean of varieties and Tj is the mean of topcrosses (pool of varieties as tester), and and are the respective average values in the whole set. Yield data from a 7 x 7 variety diallel cross were used for the variety means and for the "simulated" topcross means to illustrate the proposed procedure. The proposed prediction procedure was as effective as the prediction based on Yk = - ( -)/k, where and refer to the mean of hybrids (F1) and parental varieties, respectively, in a variety diallel cross. It was also shown in the analysis of variance that the total sum of squares due to treatments (varieties and topcrosses) can be orthogonally partitioned following the reduced model Yjj’ = mu + ½(v j + v j’) + + h j+ h j’, thus making possible an F test for varieties, average heterosis and variety heterosis. Least square estimates of these effects are also given

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper analyses the question of the counterparts that governments should claim from firms and/or economic sectors supported by vertical industrial policy. This is a discussion that still have to advance because everything indicate that the set of current counterparts (goals of costs, productivity, exportation, etc.) still may be increased and improved, what will facilitate the assessment of industrial policy execution by society and the verification of its efficacy in order to yielding more possibilities of economic growth for a country or region. To reinforce the commitment credibility of the agents supported by industrial policy, this paper proposes to maintain the counterparts meant before and that such agents will be stimulated to commit specific assets in their activities that are supported by govern. It is shown that, without use more public resources than the used currently, this new counterpart may reinforce substantially the incentives that the firms supported by vertical industrial policy have it to execute the traditional counterparts assumed by them, and with it guarantee the best possible use of public resources.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In recent years, the application of silicon (Si) in crops, including coffee, has become a common practice. The objective of this study was to assess the silicon uptake by coffee seedlings and its effects on plant growth, water and macro and micronutrient uptake. The research was conducted using nutrient solution in a greenhouse at the Departamento de Fitotecnia da Universidade Federal de Viçosa, in a completely randomized design with two treatments (with and without silicon) and three replications. Each plot consisted of three plants grown in a 800 mL vessel containing the treatment solutions. At every three days, water consumption, the concentration of OH - and the depletion of Si and K were assessed in the nutrient solutions. After 33 days, the plants were assessed with regard to their fresh and dry weight of leaves, roots and stem, shoot height and total length of the plant (shoot and root). Number of leaves and internodes, and the content and accumulation of silicon, macro, and micronutrients were also determined. The consumption of water, the amount of potassium uptake and, biomass accumulation were greater in plants grown in solution without silicon addition. However, the concentration of OH- in the solution and the amount of silicon uptake were greater in plants grown in solution with added silicon. Silicon accumulation was greater in leaves than in stem and roots. Silicon decreased coffee plant accumulation of phosphorus, potassium, calcium, zinc, copper and iron.