175 resultados para rDNA systematics
em Scielo Saúde Pública - SP
Resumo:
This study aimed to evaluate species level taxonomy and phylogenetic relationship among Thorea species in Brazil and other regions of the world using two molecular markers - RUBISCO large subunit plastid gene (rbcL) and nuclear small-subunit ribosomal DNA (SSU rDNA). Three samples of Thorea from Brazil (states of Mato Grosso do Sul and São Paulo) and one sample from Dominican Republic (DR) were sequenced. Analyses based on partial sequences of rbcL (1,282 bp) and complete sequences of SSU (1,752 bp) were essentially congruent and revealed that Thoreales formed a distinct monophyletic clade, which had two major branches with high support, representing the genera Thorea and Nemalionopsis. Thorea clade had four main branches with high support for all analyses, each one representing the species: 1) T. gaudichaudii C. Agardh from Asia (Japan and Philippines) - this clade occurred only in the rbcL analyses; 2) T. violacea Bory from Asia (Japan) and North America (U.S.A. and DR); 3) T. hispida (Thore) Desvaux from Europe (England) and Asia (Japan); 4) a distinct group with the three Brazilian samples (sequence identity: rbcL 97.2%, 1,246 bp; SSU 96.0-98.1%, 1,699-1,720 bp). The Brazilian samples clearly formed a monophyletic clade based on both molecular markers and was interpreted as a separate species, for which we resurrected the name T. bachmannii Pujals. Morphological and molecular evidences indicate that the Thoreales is well-resolved at ordinal and generic levels. In contrast, Thorea species recognized by molecular data require additional characters (e.g. reproductive and chromosome numbers) to allow consistent and reliable taxonomic circumscription aiming at a world revision based on molecular and morphological evidences.
Resumo:
Systematics is the study of diversity of the organisms and their relationships comprising classification, nomenclature and identification. The term classification or taxonomy means the arrangement of the organisms in groups (rate) and the nomenclature is the attribution of correct international scientific names to organisms and identification is the inclusion of unknown strains in groups derived from classification. Therefore, classification for a stable nomenclature and a perfect identification are required previously. The beginning of the new bacterial systematics era can be remembered by the introduction and application of new taxonomic concepts and techniques, from the 50s and 60s. Important progress were achieved using numerical taxonomy and molecular taxonomy. Molecular taxonomy, brought into effect after the emergence of the Molecular Biology resources, provided knowledge that comprises systematics of bacteria, in which occurs great evolutionary interest, or where is observed the necessity of eliminating any environmental interference. When you study the composition and disposition of nucleotides in certain portions of the genetic material, you study searching their genome, much less susceptible to environmental alterations than proteins, codified based on it. In the molecular taxonomy, you can research both DNA and RNA, and the main techniques that have been used in the systematics comprise the build of restriction maps, DNA-DNA hybridization, DNA-RNA hybridization, sequencing of DNA sequencing of sub-units 16S and 23S of rRNA, RAPD, RFLP, PFGE etc. Techniques such as base sequencing, though they are extremely sensible and greatly precise, are relatively onerous and impracticable to the great majority of the bacterial taxonomy laboratories. Several specialized techniques have been applied to taxonomic studies of microorganisms. In the last years, these have included preliminary electrophoretic analysis of soluble proteins and isoenzymes, and subsequently determination of deoxyribonucleic acid base composition and assessment of base sequence homology by means of DNA-RNA hybrid experiments beside others. These various techniques, as expected, have generally indicated a lack of taxonomic information in microbial systematics. There are numberless techniques and methodologies that make bacteria identification and classification study possible, part of them described here, allowing establish different degrees of subspecific and interspecific similarity through phenetic-genetic polymorphism analysis. However, was pointed out the necessity of using more than one technique for better establish similarity degrees within microorganisms. Obtaining data resulting from application of a sole technique isolatedly may not provide significant information from Bacterial Systematics viewpoint
Resumo:
Gargaphia inca Monte, 1943 was synonymized with G. opima Drake, 1931 without any declared reasons. Gargaphia inca is known only from its type location (Satipo, Peru), and G. opima from Colombia (Villavencio) and Peru (Cam. Del Pichis, type-locality), in addition to the new records here presented, including the first record for Ecuador. Both species are redescribed, and the status of G. inca is revisited and raised from synonymy. Illustrations of some of the most remarkable differences between these taxa are provided, as well as dorsal habitus images. Discussions on the genus systematic status and this nomenclatural act are presented.
Resumo:
Because of the relative epidemiological significance of Triatoma sordida, T. guasayana and T. patagonica, and the need to resolve doubts about their taxonomic validity, we report here a detailed taxonomic comparison of the three species using multivariate analysis of morphometric measures combined with comparisons of their genitalia and antennal structures. From the 17 metric variables studied, the length of the second segment of the rostrum and the anteocular length provided a discrimination function able to separate without error T. sordida from T. guasayana and T. patagonica. The multivariate discriminant functions classified T. guasayana and T. patagonica with an error of 2.44%. Comparison of the male genitalia of T. guasayana and T. sordida showed that there are minor differences in the articulatory apparatus, the median process of the pygophore, the phallosome support and the vesica, with bigger differences in the endosomal process and the phallosome. However, the already described male genitalia of T. patagonica is very similar to that of T. sordida. Analysis of antennal structure by scanning electron microscope showed that sensilla distribution around the pedicel is slightly different in the three species and sensilla density is highest in T. sordida and lowest in T. patagonica. The study showed that the three species form a closely related group. The results confirm the earlier classification of sordida and guasayana as separate species, but they raise some doubts about the taxonomic status of T. patagonica.
Resumo:
A new phylogenetic analysis of the Nyssorhynchus subgenus (Danoff-Burg and Conn, unpub. data) using six data sets {morphological (all life stages); scanning electron micrographs of eggs; nuclear ITS2 sequences; mitochondrial COII, ND2 and ND6 sequences} revealed different topologies when each data set was analyzed separately but no heterogeneity between the data sets using the arn test. Consequently, the most accurate estimate of the phylogeny was obtained when all the data were combined. This new phylogeny supports a monophyletic Nyssorhynchus subgenus but both previously recognized sections in the subgenus (Albimanus and Argyritarsis) were demonstrated to be paraphyletic relative to each other and four of the seven clades included species previously placed in both sections. One of these clades includes both Anopheles darlingi and An. albimanus, suggesting that the ability to vector malaria effectively may have originated once in this subgenus. Both a conserved (315 bp) and a variable (425 bp) region of the mitochondrial COI gene from 15 populations of An. darlingi from Belize, Bolivia, Brazil, French Guiana, Peru and Venezuela were used to examine the evolutionary history of this species and to test several analytical assumptions. Results demonstrated (1) parsimony analysis is equally informative compared to distance analysis using NJ; (2) clades or clusters are more strongly supported when these two regions are combined compared to either region separately; (3) evidence (in the form of remnants of older haplotype lineages) for two colonization events; and (4) significant genetic divergence within the population from Peixoto de Azevedo (State of Mato Grosso, Brazil). The oldest lineage includes populations from Peixoto, Boa Vista (State of Roraima) and Dourado (State of São Paulo).
Resumo:
Studies based on shell or reproductive organ morphology and genetic considerations suggest extensive intraspecific variation in Biomphalaria snails. The high variability at the morphological and genetic levels, as well as the small size of some specimens and similarities between species complicate the correct identification of these snails. Here we review our work using methods based on polymerase chain reaction (PCR) amplification for analysis of genetic variation and identification of Biomphalaria snails from Brazil, Argentina, Uruguay and Paraguay. Arbitrarily primed-PCR revealed that the genome of B. glabrata exihibits a remarkable degree of intraespecific polymorphism. Low stringency-PCR using primers for 18S rRNA permited the identification of B. glabrata, B. tenagophila and B. occidentalis. The study of individuals obtained from geographically distinct populations exhibits significant intraspecific DNA polymorphism, however specimens from the same species, exhibit some species specific LSPs. We also showed that PCR-restriction fragment of length polymorphism of the internal transcribed spacer region of Biomphalaria rDNA, using DdeI permits the differentiation of the three intermediate hosts of Schistosoma mansoni. The molecular biological techniques used in our studies are very useful for the generation of new knowledge concerning the systematics and population genetics of Biomphalaria snails.
Resumo:
The polymerase chain reaction and restriction fragment length polymorphism (RFLP) of the internal transcribed spacer (ITS) region of the rRNA gene, using the enzyme DdeI were used for the molecular identification of ten species and one subspecies of Brazilian Biomphalaria. Emphasis is given to the analysis of B. oligoza, B. schrammi and B. amazonica. The RFLP profiles obtained using this enzyme were highly distinctive for the majority of the species and exhibited low levels of intraspecific polymorphism among specimens from different regions of Brazil. However, B. peregrina and B. oligoza presented very similar profiles that complicated their identification at the molecular level and suggested a very close genetic similarity between the two species. Others enzymes including HaeIII, HpaII, AluI and MnlI were tested for their ability to differentiate these species. For B. amazonica three variant profiles produced with DdeI were observed. The study demonstrated that the ITS contains useful genetic markers for the identification of these snails
Resumo:
The evolutionary history and times of divergence of triatomine bug lineages are estimated from molecular clocks inferred from nucleotide sequences of the small subunit SSU (18S) and the second internal transcribed spacer (ITS-2) of the nuclear ribosomal DNA of these reduviids. The 18S rDNA molecular clock rate in Triatominae, and Prosorrhynchan Hemiptera in general, appears to be of 1.8% per 100 million years (my). The ITS-2 molecular clock rate in Triatominae is estimated to be around 0.4-1% per 1 my, indicating that ITS-2 evolves 23-55 times faster than 18S rDNA. Inferred chronological data about the evolution of Triatominae fit well with current hypotheses on their evolutionary histories, but suggest reconsideration of the current taxonomy of North American species complexes.
Resumo:
Thanks to the phylogenetic systematics revolution, systematic parasitology is poised to make significant contributions in tropical medicine and public health, biodiversity science, and evolutionary biology. At the same time, the taxonomic impediment is acute within parasitology. Both systematists and non-systematists must be interested in working towards common goals and establishing collaborative efforts in order to re-vitalize and re-populate systematic parasitology.
Resumo:
Domiciliated Rhodnius prolixus and sylvatic R. colombiensis were analyzed in order to confirm their genetic divergence and verify the risk that the latter represents in the domiciliation process, and to provide tools for identifying the sources of possible reinfestation by triatomines in human dwellings allowing control programs to be undertaken. Comparison of random amplified polymorphic DNA amplification patterns and cluster analysis suggests reproductive discontinuity between the two species. The calculated statistical F value of 0.24 and effective migration rate of 0.6 individuals per generation are insufficient to maintain genetic homogeneity between them and confirm the absence of present genetic flow. R. colombiensis presents higher intrapopulation variability. Polymerase chain reaction of ribosomal DNA supports these findings. The low genetic flow between the two species implies that R. colombiensis do not represent an epidemiological risk for the domiciliary transmission of Trypanosoma cruzi in the Tolima Department. The lower variability of the domiciliated R. prolixus could result in greater susceptibility to the use of pesticides in control programs.
Resumo:
Anopheles galvaoi, a member of the subgenus Nyssorhynchus, is redescribed based on morphological characters of the adults male and female, fourth-instar larva and pupa. Female, male genitalia, larval and pupal stages are illustrated. Data about medical importance, bionomics, and distribution are given based on literature records. Adult female of An. galvaoi can be easily misidentified as An. benarrochi Gabaldón and An. aquasalis Curry. A few characters are indicated for identifying female and immatures of An. galvaoi. Phylogenetic relationships among An. galvaoi and six other species of the Oswaldoi Subgroup are estimated using COII mtDNA and ITS2 rDNA gene sequences. Lectotype of An. galvaoi, an adult female from Rio Branco, State of Acre, is invalidated.
Resumo:
Anopheles (Nyssorhynchus) marajoara is a proven primary vector of malaria parasites in Northeast Brazil, and An. deaneorum is a suspected vector in Western Brazil. Both are members of the morphologically similar Albitarsis Complex, which also includes An. albitarsis and an undescribed species, An. albitarsis "B". These four species were recognized and can be identified using random amplified polymorphic DNA (RAPD) markers, but various other methodologies also point to multiple species under the name An. albitarsis. We describe here a technique for identification of these species employing polymerase chain reaction (PCR) primers based on ribosomal DNA internal transcribed spacer 2 (rDNA ITS2) sequence. Since this method is based on known sequence it is simpler than the sometimes problematical RAPD-PCR. Primers were tested on samples previously identified using RAPD markers with complete correlation.
Resumo:
Anopheles (Nyssorhynchus) lanei Galvão and Amaral is here redescribed using morphological characteristics of adult, male and female, fourth instar larva and pupa. The larva, pupa, and male genitalia are illustrated. Diagnostic morphological characters of adults, male genitalia, fourth instar larva and pupa are provided to distinguish An. lanei from other species of the Argyritarsis section. Species distribution data are based on the published literature records and bionomics data are based on both literature records and field data.
Resumo:
Recently, knowledge of Neotropical Simuliidae has been accumulating quickly. However, information about supra-specific relationships is scarce and diagnoses of Simulium subgenera are unsatisfactory. To investigate the relationships among Simulium (Chirostilbia) species and test the subgenus monophyly, we performed a cladistic analysis. The ingroup included all species of this subgenus and the outgroup included representatives of the 17 species groups of Neotropical Simulium and three Holarctic species. The study was based on a data matrix with 31 terminal taxa and 45 morphological characteristics of adult, pupa and larva. The phylogenetic analysis under equal weights resulted in eight most-parsimonious trees (length = 178, consistency index = 34, retention index = 67). The monophyly of the S. (Chirostilbia) was not supported in our analysis. The Simulium subpallidum species group was closer to Simulium (Psilopelmia) and Simulium (Ectemnaspis) than to the Simulium pertinax species group. Additionally, we describe the three-dimensional shape of the terminalia of male and female of Simulium (Chirostilbia) for the first time and provide comments about the taxonomic problems involving some species of the subgenus: Simulium acarayense, Simulium papaveroi, S. pertinax, Simulium serranum, Simulium striginotum and S. subpallidum.
Resumo:
Currently, it is accepted that there are three species that were formerly grouped under Candida parapsilosis: C. para- psilosis sensu stricto, Candida orthopsilosis, andCandida metapsilosis. In fact, the antifungal susceptibility profiles and distinct virulence attributes demonstrate the differences in these nosocomial pathogens. An accurate, fast, and economical identification of fungal species has been the main goal in mycology. In the present study, we searched sequences that were available in the GenBank database in order to identify the complete sequence for the internal transcribed spacer (ITS)1-5.8S-ITS2 region, which is comprised of the forward and reverse primers ITS1 and ITS4. Subsequently, an in silico polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) was performed to differentiate the C. parapsilosis complex species. Ninety-eight clinical isolates from patients with fungaemia were submitted for analysis, where 59 isolates were identified as C. parapsilosis sensu stricto, 37 were identified as C. orthopsilosis, and two were identified as C. metapsilosis. PCR-RFLP quickly and accurately identified C. parapsilosis complex species, making this method an alternative and routine identification system for use in clinical mycology laboratories.