56 resultados para pulmonary vascular resistance
em Scielo Saúde Pública - SP
Resumo:
Abstract Background: Pulmonary hypertension is associated with poor prognosis in heart failure. However, non-invasive diagnosis is still challenging in clinical practice. Objective: We sought to assess the prognostic utility of non-invasive estimation of pulmonary vascular resistances (PVR) by cardiovascular magnetic resonance to predict adverse cardiovascular outcomes in heart failure with reduced ejection fraction (HFrEF). Methods: Prospective registry of patients with left ventricular ejection fraction (LVEF) < 40% and recently admitted for decompensated heart failure during three years. PVRwere calculated based on right ventricular ejection fraction and average velocity of the pulmonary artery estimated during cardiac magnetic resonance. Readmission for heart failure and all-cause mortality were considered as adverse events at follow-up. Results: 105 patients (average LVEF 26.0 ±7.7%, ischemic etiology 43%) were included. Patients with adverse events at long-term follow-up had higher values of PVR (6.93 ± 1.9 vs. 4.6 ± 1.7estimated Wood Units (eWu), p < 0.001). In multivariate Cox regression analysis, PVR ≥ 5 eWu(cutoff value according to ROC curve) was independently associated with increased risk of adverse events at 9 months follow-up (HR2.98; 95% CI 1.12-7.88; p < 0.03). Conclusions: In patients with HFrEF, the presence of PVR ≥ 5.0 Wu is associated with significantly worse clinical outcome at follow-up. Non-invasive estimation of PVR by cardiac magnetic resonance might be useful for risk stratification in HFrEF, irrespective of etiology, presence of late gadolinium enhancement or LVEF.
Resumo:
To investigate the role of nitric oxide in human sepsis, ten patients with severe septic shock requiring vasoactive drug therapy and mechanical ventilation were enrolled in a prospective, open, non-randomized clinical trial to study the acute effects of methylene blue, an inhibitor of guanylate cyclase. Hemodynamic and metabolic variables were measured before and 20, 40, 60, and 120 min after the start of a 1-h intravenous infusion of 4 mg/kg of methylene blue. Methylene blue administration caused a progressive increase in mean arterial pressure (60 [55-70] to 70 [65-100] mmHg, median [25-75th percentiles]; P<0.05), systemic vascular resistance index (649 [479-1084] to 1066 [585-1356] dyne s-1 cm-5 m-2; P<0.05) and the left ventricular stroke work index (35 [27-47] to 38 [32-56] g m-1 m-2; P<0.05) from baseline to 60 min. The pulmonary vascular resistance index increased from 150 [83-207] to 186 [121-367] dyne s-1 cm-5 m-2 after 20 min (P<0.05). Mixed venous saturation decreased from 65 [56-76] to 63 [55-69]% (P<0.05) after 60 min. The PaO2/FiO2 ratio decreased from 168 [131-215] to 132 [109-156] mmHg (P<0.05) after 40 min. Arterial lactate concentration decreased from 5.1 ± 2.9 to 4.5 ± 2.1 mmol/l, mean ± SD (P<0.05) after 60 min. Heart rate, cardiac filling pressures, cardiac output, oxygen delivery and consumption did not change. Methylene blue administration was safe and no adverse effect was observed. In severe human septic shock, a short infusion of methylene blue increases systemic vascular resistance and may improve myocardial function. Although there was a reduction in blood lactate concentration, this was not explained by an improvement in tissue oxygenation, since overall oxygen availability did not change. However, there was a significant increase in pulmonary vascular tone and a deterioration in gas exchange. Further studies are needed to demonstrate if nitric oxide blockade with methylene blue can be safe for patients with septic shock and, particularly, if it has an effect on pulmonary function.
Lowering Pulmonary Wedge Pressure after Heart Transplant: Pulmonary Compliance and Resistance Effect
Resumo:
AbstractBackground:Right ventricular (RV) afterload is an important risk factor for post-heart transplantation (HTx) mortality, and it results from the interaction between pulmonary vascular resistance (PVR) and pulmonary compliance (CPA). Their product, the RC time, is believed to be constant. An exception is observed in pulmonary hypertension because of elevated left ventricular (LV) filling pressures.Objective:Using HTx as a model for chronic lowering of LV filling pressures, our aim was to assess the variations in RV afterload components after transplantation.Methods:We retrospectively studied 159 patients with right heart catheterization before and after HTx. The effect of Htx on hemodynamic variables was assessed.Results:Most of the patients were male (76%), and the mean age was 53 ± 12 years. HTx had a significant effect on the hemodynamics, with normalization of the LV and RV filling pressures and a significant increase in cardiac output and heart rate (HR). The PVR decreased by 56% and CPA increased by 86%. The RC time did not change significantly, instead of increasing secondary to pulmonary wedge pressure (PWP) normalization after HTx as expected. The expected increase in RC time with PWP lowering was offset by the increase in HR (because of autonomic denervation of the heart). This effect was independent from the decrease of PWP.Conclusion:The RC time remained unchanged after HTx, notwithstanding the fact that pulmonary capillary wedge pressure significantly decreased. An increased HR may have an important effect on RC time and RV afterload. Studying these interactions may be of value to the assessment of HTx candidates and explaining early RV failure after HTx.
Resumo:
Background: No studies have described and evaluated the association between hemodynamics, physical limitations and quality of life in patients with pulmonary hypertension (PH) without concomitant cardiovascular or respiratory disease. Objective: To describe the hemodynamic profile, quality of life and physical capacity of patients with PH from groups I and IV and to study the association between these outcomes. Methods: Cross-sectional study of patients with PH from clinical groups I and IV and functional classes II and III undergoing the following assessments: hemodynamics, exercise tolerance and quality of life. Results: This study assessed 20 patients with a mean age of 46.8 ± 14.3 years. They had pulmonary capillary wedge pressure of 10.5 ± 3.7 mm Hg, 6-minute walk distance test (6MWDT) of 463 ± 78 m, oxygen consumption at peak exercise of 12.9 ± 4.3 mLO2.kg-1.min-1 and scores of quality of life domains < 60%. There were associations between cardiac index (CI) and ventilatory equivalent for CO2 (r=-0.59, p <0.01), IC and ventilatory equivalent for oxygen (r=-0.49, p<0.05), right atrial pressure (RAP) and 'general health perception' domain (r=-0.61, p<0.01), RAP and 6MWTD (r=-0.49, p<0.05), pulmonary vascular resistance (PVR) and 'physical functioning' domain (r=-0.56, p<0.01), PVR and 6MWTD (r=-0.49, p<0.05) and PVR index and physical capacity (r=-0.51, p<0.01). Conclusion: Patients with PH from groups I and IV and functional classes II and III exhibit a reduction in physical capacity and in the physical and mental components of quality of life. The hemodynamic variables CI, diastolic pulmonary arterial pressure, RAP, PVR and PVR index are associated with exercise tolerance and quality of life domains.
Resumo:
The objective of this study was to observe possible interactions between the renin-angiotensin and nitrergic systems in chronic hypoxia-induced pulmonary hypertension in newborn piglets. Thirteen chronically instrumented newborn piglets (6.3 ± 0.9 days; 2369 ± 491 g) were randomly assigned to receive saline (placebo, P) or the AT1 receptor (AT1-R) blocker L-158,809 (L) during 6 days of hypoxia (FiO2 = 0.12). During hypoxia, pulmonary arterial pressure (Ppa; P < 0.0001), pulmonary vascular resistance (PVR; P < 0.02) and the pulmonary to systemic vascular resistance ratio (PVR/SVR; P < 0.05) were significantly attenuated in the L (N = 7) group compared to the P group (N = 6). Western blot analysis of lung proteins showed a significant decrease of endothelial NOS (eNOS) in both P and L animals, and of AT1-R in P animals during hypoxia compared to normoxic animals (C group, N = 5; P < 0.01 for all groups). AT1-R tended to decrease in L animals. Inducible NOS (iNOS) did not differ among P, L, and C animals and iNOS immunohistochemical staining in macrophages was significantly more intense in L than in P animals (P < 0.01). The vascular endothelium showed moderate or strong eNOS and AT1-R staining. Macrophages and pneumocytes showed moderate or strong iNOS and AT1-R staining, but C animals showed weak iNOS and AT1-R staining. Macrophages of L and P animals showed moderate and weak AT2-R staining, respectively, but the endothelium of all groups only showed weak staining. In conclusion, pulmonary hypertension induced by chronic hypoxia in newborn piglets is partially attenuated by AT1-R blockade. We suggest that AT1-R blockade might act through AT2-R and/or Mas receptors and the nitrergic system in the lungs of hypoxemic newborn piglets.
Resumo:
Various methods are available for preservation of vascular grafts for pulmonary artery (PA) replacement. Lyophilization and cryopreservation reduce antigenicity and prevent thrombosis and calcification in vascular grafts, so both methods can be used to obtain vascular bioprostheses. We evaluated the hemodynamic, gasometric, imaging, and macroscopic and microscopic findings produced by PA reconstruction with lyophilized (LyoPA) grafts and cryopreserved (CryoPA) grafts in dogs. Eighteen healthy crossbred adult dogs of both sexes weighing between 18 and 20 kg were used and divided into three groups of six: group I, PA section and reanastomosis; group II, PA resection and reconstruction with LyoPA allograft; group III, PA resection and reconstruction with CryoPA allograft. Dogs were evaluated 4 weeks after surgery, and the status of the graft and vascular anastomosis were examined macroscopically and microscopically. No clinical, radiologic, or blood-gas abnormalities were observed during the study. The mean pulmonary artery pressure (MPAP) in group III increased significantly at the end of the study compared with baseline (P=0.02) and final [P=0.007, two-way repeat-measures analysis of variance (RM ANOVA)] values. Pulmonary vascular resistance of groups II and III increased immediately after reperfusion and also at the end of the study compared to baseline. The increase shown by group III vs group I was significant only if compared with after surgery and study end (P=0.016 and P=0.005, respectively, two-way RM ANOVA). Microscopically, permeability was reduced by ≤75% in group III. In conclusion, substitution of PAs with LyoPA grafts is technically feasible and clinically promising.
Resumo:
OBJECTIVE: To assess the hemodynamic and vasodilating effects of milrinone lactate (ML) in patients with dilated cardiomyopathy (DCM) and New York Heart Association (NYHA) class III and IV heart failure. METHODS: Twenty patients with DCM and NYHA class III and IV heart failure were studied. The hemodynamic and vasodilating effects of ML, administered intravenously, were evaluated. The following variables were compared before and during drug infusion: cardiac output (CO) and cardiac index (CI); pulmonary capillary wedge pressure (PCWP); mean aortic pressure (MAP); mean pulmonary artery pressure (MPAP); mean right atrial pressure (MRAP); left ventricular systolic and end-diastolic pressures (LVSP and LVEDP, respectively); peak rate of left ventricular pressure rise (dP/dt); systemic vascular resistance (SVR); pulmonary vascular resistance (PVR); and heart rate (HR). RESULTS: All patients showed a significant improvement of the analysed parameters of cardiac performance with an increase of CO and CI; a significant improvement in myocardial contractility (dP/dt) and reduction of the LVEDP; PCWP; PAP; MAP; MRAP; SVR; PVR. Were observed no significant increase in HR occurred. CONCLUSION: Milrinone lactate is an inotropic dilating drug that, when administered intravenously, has beneficial effects on cardiac performance and myocardial contractility. It also promotes reduction of SVR and PVR in patients with DCM and NYHA class III and IV of heart failure.
Resumo:
OBJETIVE: To assess the hemodynamic profile of cardiac surgery patients with circulatory instability in the early postoperative period (POP). METHODS: Over a two-year period, 306 patients underwent cardiac surgery. Thirty had hemodynamic instability in the early POP and were monitored with the Swan-Ganz catheter. The following parameters were evaluated: cardiac index (CI), systemic and pulmonary vascular resistance, pulmonary shunt, central venous pressure (CVP), pulmonary capillary wedge pressure (PCWP), oxygen delivery and consumption, use of vasoactive drugs and of circulatory support. RESULTS: Twenty patients had low cardiac index (CI), and 10 had normal or high CI. Systemic vascular resistance was decreased in 11 patients. There was no correlation between oxygen delivery (DO2) and consumption (VO2), p=0.42, and no correlation between CVP and PCWP, p=0.065. Pulmonary vascular resistance was decreased in 15 patients and the pulmonary shunt was increased in 19. Two patients with CI < 2L/min/m² received circulatory support. CONCLUSION: Patients in the POP of cardiac surgery frequently have a mixed shock due to the systemic inflammatory response syndrome (SIRS). Therefore, invasive hemodynamic monitoring is useful in handling blood volume, choice of vasoactive drugs, and indication for circulatory support.
Resumo:
The available data suggests that hypotension caused by Hg2+ administration may be produced by a reduction of cardiac contractility or by cholinergic mechanisms. The hemodynamic effects of an intravenous injection of HgCl2 (5 mg/kg) were studied in anesthetized rats (N = 12) by monitoring left and right ventricular (LV and RV) systolic and diastolic pressures for 120 min. After HgCl2 administration the LV systolic pressure decreased only after 40 min (99 ± 3.3 to 85 ± 8.8 mmHg at 80 min). However, RV systolic pressure increased, initially slowly but faster after 30 min (25 ± 1.8 to 42 ± 1.6 mmHg at 80 min). Both right and left diastolic pressures increased after HgCl2 treatment, suggesting the development of diastolic ventricular dysfunction. Since HgCl2 could be increasing pulmonary vascular resistance, isolated lungs (N = 10) were perfused for 80 min with Krebs solution (continuous flow of 10 ml/min) containing or not 5 µM HgCl2. A continuous increase in pulmonary vascular resistance was observed, suggesting the direct effect of Hg2+ on the pulmonary vessels (12 ± 0.4 to 29 ± 3.2 mmHg at 30 min). To examine the interactions of Hg2+ and changes in cholinergic activity we analyzed the effects of acetylcholine (Ach) on mean arterial blood pressure (ABP) in anesthetized rats (N = 9) before and after Hg2+ treatment (5 mg/kg). Using the same amount and route used to study the hemodynamic effects we also examined the effects of Hg2+ administration on heart and plasma cholinesterase activity (N = 10). The in vivo hypotensive response to Ach (0.035 to 10.5 µg) was reduced after Hg2+ treatment. Cholinesterase activity (µM h-1 mg protein-1) increased in heart and plasma (32 and 65%, respectively) after Hg2+ treatment. In conclusion, the reduction in ABP produced by Hg2+ is not dependent on a putative increase in cholinergic activity. HgCl2 mainly affects cardiac function. The increased pulmonary vascular resistance and cardiac failure due to diastolic dysfunction of both ventricles are factors that might contribute to the reduction of cardiac output and the fall in arterial pressure.
Resumo:
Increased pulmonary vascular resistance in preterm newborn infants with respiratory distress syndrome is suggested, and endothelin-1 plays an important role in pulmonary vascular reactivity in newborns. We determined umbilical cord blood and neonatal (second sample) levels of endothelin-1 in 18 preterm newborns with respiratory distress syndrome who had no clinical or echocardiographic diagnosis of pulmonary hypertension and 22 without respiratory distress syndrome (gestational ages: 31.4 ± 1.6 and 29.3 ± 2.3 weeks, respectively). Umbilical cord blood and a second blood sample taken 18 to 40 h after birth were used for endothelin-1 determination by enzyme immunoassay. Median umbilical cord blood endothelin-1 levels were similar in both groups (control: 10.9 and respiratory distress syndrome: 11.4 pg/mL) and were significantly higher than in the second sample (control: 1.7 pg/mL and respiratory distress syndrome: 3.5 pg/mL, P < 0.001 for both groups). Median endothelin-1 levels in the second sample were significantly higher in children with respiratory distress syndrome than in control infants (P < 0.001). There were significant positive correlations between second sample endothelin-1 and Score for Neonatal Acute Physiology and Perinatal Extension II (r = 0.36, P = 0.02), and duration of mechanical ventilation (r = 0.64, P = 0.02). A slower decline of endothelin-1 from birth to 40 h of life was observed in newborns with respiratory distress syndrome when compared to controls. A significant correlation between neonatal endothelin-1 levels and some illness-severity signs suggests that endothelin-1 plays a role in the natural course of respiratory distress syndrome in preterm newborns.
Resumo:
OBJECTIVE: Anatomical and functional assessment of the heart through Doppler and echocardiography in patients with cell anemia (SCA). METHODS: Twenty-five patients with SCA and ages ranging from 14 to 45 years were prospectively studied in a comparison with 25 healthy volunteers. All of them underwent clinical and laboratory evaluation and Doppler echocardiography as well.The measurements were converted into body surface indices. RESULTS: There were increases in all chamber diameters and left ventricle (LV) mass of the SCA patients. It was characterised an eccentric hypertrophy of the left ventricle. The preload was increased (left ventricle end-diastolic volume) and the afterload was decreased (diastolic blood pressure, peripheral vascular resistance and end-systolic parietal stress ESPS). The cardiac index was increased due to the stroke volume. The ejection fraction and the percentage of the systolic shortening , as well as the systolic time intervals of the LV were equivalent. The isovolumetric contraction period of the LV was increased. The mitral E-septum distance and the end-systolic volume index (ESVi) were increased. The ESPS/ESVi ratio,a loading independent parameter, was decreased in SCA, suggesting systolic dysfunction. No significant differences in the diastolic function or in the pulmonary pressure occurred. CONCLUSION: Chamber dilations, eccentric hypertrophy and systolic dysfunction confirm the evidence of the literature in characterizing a sickle cell anemia cardiomyopathy.
Resumo:
Background:Transposition of the great arteries (TGA) is the most common cyanotic cardiopathy, with an incidence ranging between 0.2 and 0.4 per 1000 live births. Many patients not treated in the first few months of life may progress with severe pulmonary vascular disease. Treatment of these patients may include palliative surgery to redirect the flow at the atrial level.Objective:Report our institutional experience with the palliative Senning procedure in children diagnosed with TGA and double outlet right ventricle with severe pulmonary vascular disease, and to evaluate the early and late clinical progression of the palliative Senning procedure.Methods:Retrospective study based on the evaluation of medical records in the period of 1991 to 2014. Only patients without an indication for definitive surgical treatment of the cardiopathy due to elevated pulmonary pressure were included.Results:After one year of follow-up there was a mean increase in arterial oxygen saturation from 62.1% to 92.5% and a mean decrease in hematocrit from 49.4% to 36.3%. Lung histological analysis was feasible in 16 patients. In 8 patients, pulmonary biopsy grades 3 and 4 were evidenced.Conclusion:The palliative Senning procedure improved arterial oxygen saturation, reduced polycythemia, and provided a better quality of life for patients with TGA with ventricular septal defect, severe pulmonary hypertension, and poor prognosis.
Resumo:
Ouabain is an endogenous substance occurring in the plasma in the nanomolar range, that has been proposed to increase vascular resistance and induce hypertension. This substance acts on the a-subunit of Na+,K+-ATPase inhibiting the Na+-pump activity. In the vascular smooth muscle this effect leads to intracellular Na+ accumulation that reduces the activity of the Na+/Ca2+ exchanger and to an increased vascular tone. It was also suggested that circulating ouabain, even in the nanomolar range, sensitizes the vascular smooth muscle to vasopressor substances. We tested the latter hypothesis by studying the effects of ouabain in the micromolar and nanomolar range on phenylephrine (PE)-evoked pressor responses. The experiments were performed in normotensive and hypertensive rats in vivo, under anesthesia, and in perfused rat tail vascular beds. The results showed that ouabain pretreatment increased the vasopressor responses to PE in vitro and in vivo. This sensitization after ouabain treatment was also observed in hypertensive animals which presented an enhanced vasopressor response to PE in comparison to normotensive animals. It is suggested that ouabain at nanomolar concentrations can sensitize vascular smooth muscle to vasopressor stimuli possibly contributing to increased tone in hypertension
Resumo:
The concomitant use of angiotensin-converting enzyme inhibitors and aspirin may cause pharmacological antagonism. Hence we examined the effect of aspirin on the neurohormonal function and hemodynamic response to captopril in heart failure patients. Between April 1999 and August 2000, 40 patients were randomized into four equal groups: 1) captopril, 2) aspirin, 3) captopril-aspirin: captopril was given alone on the first day, followed by aspirin on the remaining days, and 4) aspirin-captopril: aspirin was given alone on the first day, followed by captopril on the remaining days. Hemodynamic, norepinephrine and prostaglandin measurements were performed pre- and post-medication for 4 days. Captopril (50 mg) was given orally every 8 h and 300 mg aspirin was given on the first day, and 100 mg/day thereafter. In the captopril group and only on the first day of captopril-aspirin, captopril produced increases in cardiac index (2.1 ± 0.6 to 2.5 ± 0.5 l min-1 m-2, P<0.0001), and reduced peripheral vascular resistance (1980 ± 580 to 1545 ± 506 dyn s-1 cm-5/m², P<0.0001) and pulmonary wedge pressure (20 ± 4 to 15 ± 4 mmHg, P<0.0001). In contrast, aspirin alone or associated with captopril showed no significant hemodynamic changes. Norepinephrine decreased (P<0.02) only in the captopril group. Prostaglandin levels did not differ significantly among groups. Thus, aspirin compromises the short-term hemodynamic and neurohormonal effects of captopril in patients with acute decompensated heart failure.
Resumo:
OBJECTIVE: To describe mortality due to cardiovascular diseases in women during the reproductive age (15 to 49 years) in the state of São Paulo, Brazil, from 1991 to 1995. METHODS: A list of all deaths and their underlying causes, coded according to the International Classification of Diseases, 9th revision, multiple causes of death, and estimates of the female population according to age groups were provided by the SEADE Foundation. Specific coefficients for 100 thousand women for each year as well as the medians of these coefficients related to 5 years, and the percentage of death by subgroups were calculated. RESULTS: Cerebrovascular diseases have the highest coefficients (14.24 for 100 thousand females), followed by ischemic heart disease (7.37), other heart diseases (6.39), hypertensive disease (3.03), chronic rheumatic heart disease (1.58), pulmonary vascular diseases (1.29), and active rheumatic fever (0.05). Systemic arterial hypertension, as an associated cause, occurred in 55.3% to 57.8% of all the deaths due to intracerebral hemorrhage and in 30.4% to 30.8% due to subarachnoid hemorrhage. CONCLUSION: The significance of cerebrovascular diseases, coronary artery disease, and systemic arterial hypertension as causes of mortality suggests the need to emphasize preventive actions for young women who have the potential to reproduce to avoid possible complications in future pregnancies, and premature mortality.