35 resultados para prefrontal cortex (PFC)

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Serotonin (5-HT1B) receptors play an essential role in the inhibition of aggressive behavior in rodents. CP-94,253, a 5-HT1B receptor agonist, can reduce aggression in male mice when administered directly into the ventro-orbitofrontal (VO) prefrontal cortex (PFC). The objective of the current study was to assess the effects of two selective 5-HT1B receptor agonists (CP-94,253 and CP-93,129), microinjected into the VO PFC, on maternal aggressive behavior after social instigation in rats. CP-94,253 (0.56 µg/0.2 µL, N = 8, and 1.0 µg/0.2 µL, N = 8) or CP-93,129 (1.0 µg/0.2 µL, N = 9) was microinjected into the VO PFC of Wistar rats on the 9th day postpartum and 15 min thereafter the aggressive behavior by the resident female against a male intruder was recorded for 10 min. The frequency and duration of aggressive and non-aggressive behaviors were analyzed using ANOVA and post hoc tests. CP-93,129 significantly decreased maternal aggression. The frequency of lateral attacks, bites and pinnings was reduced compared to control, while the non-aggressive behaviors and maternal care were largely unaffected by this treatment. CP-94,253 had no significant effects on aggressive or non-aggressive behaviors when microinjected into the same area of female rats. CP-93,129, a specific 5-HT1B receptor agonist, administered into the VO PFC reduced maternal aggressive behavior, while the CP-94,253 agonist did not significantly affect this behavior after social instigation in female rats. We conclude that only the 5-HT1B receptor agonist CP-93,129 administered into the VO PFC decreased aggression in female rats postpartum after social instigation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Female rats are intensely affected by cocaine, with estrogen probably playing an important role in this effect. Progesterone modulates the GABA system and attenuates the effects of cocaine; however, there is no information about its relevance in changing GABA synthesis pathways after cocaine administration to female rats. Our objective was to investigate the influence of progesterone on the effects of repeated cocaine administration on the isoenzymes of glutamic acid decarboxylase (GAD65 and GAD67) mRNA in brain areas involved in the addiction circuitry. Ovariectomized, intact and progesterone replacement-treated female rats received saline or cocaine (30 mg/kg, ip) acutely or repeatedly. GAD isoenzyme mRNA levels were determined in the dorsolateral striatum (dSTR) and prefrontal cortex (PFC) by RT-PCR, showing that repeated, but not acute, cocaine decreased GADs/β-actin mRNA ratio in the dSTR irrespective of the hormonal condition (GAD65: P < 0.001; and GAD67: P = 0.004). In the PFC, repeated cocaine decreased GAD65 and increased GAD67 mRNA ratio (P < 0.05). Progesterone replacement decreased both GAD isoenzymes mRNA ratio after acute cocaine in the PFC (P < 0.001) and repeated cocaine treatment reversed this decrease (P < 0.001). These results suggest that cocaine does not immediately affect GAD mRNA expression, while repeated cocaine decreases both GAD65 and GAD67 mRNA in the dSTR of female rats, independently of their hormonal conditions. In the PFC, repeated cocaine increases the expression of GAD isoenzymes, which were decreased due to progesterone replacement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that exposure to a variety of stressful experiences enhances fearful reactions when behavior is tested in current animal models of anxiety. Until now, no study has examined the neurochemical changes during the test and retest sessions of rats submitted to the elevated plus maze (EPM). The present study uses a new approach (HPLC) by looking at the changes in dopamine and serotonin levels in the prefrontal cortex, amygdala, dorsal hippocampus, and nucleus accumbens in animals upon single or double exposure to the EPM (one-trial tolerance). The study involved two experiments: i) saline or midazolam (0.5 mg/kg) before the first trial, and ii) saline or midazolam before the second trial. For the biochemical analysis a control group injected with saline and not tested in the EPM was included. Stressful stimuli in the EPM were able to elicit one-trial tolerance to midazolam on re-exposure (61.01%). Significant decreases in serotonin contents occurred in the prefrontal cortex (38.74%), amygdala (78.96%), dorsal hippocampus (70.33%), and nucleus accumbens (73.58%) of the animals tested in the EPM (P < 0.05 in all cases in relation to controls not exposed to the EPM). A significant decrease in dopamine content was also observed in the amygdala (54.74%, P < 0.05). These changes were maintained across trials. There was no change in the turnover rates of these monoamines. We suggest that exposure to the EPM causes reduced monoaminergic neurotransmission activity in limbic structures, which appears to underlie the "one-trial tolerance" phenomenon.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

INTRODUCTION: Neuroimaging studies suggest that obese people might show hyperactivity of brain areas regarding reward processing, and hypoactivity of brain areas concerning cognitive control, when exposed to food cues. Although the effects of bariatric surgery on the central nervous system and eating behavior are well known, few studies have used neuroimage techniques with the aim of investigating the central effects of bariatric surgery in humans. OBJECTIVES: This paper systematically and critically reviews studies using functional neuroimaging to investigate changes on the patterns of activation of central areas related to the regulation of eating behavior after bariatric surgery. METHOD: A search on the databases Medline, Web of Science, Lilacs and Science Direct on Line, was conducted in February 2013, using the keywords "Neuroimaging", "Positron-Emission Tomography", "Magnetic Resonance Imaging", "Gastric Bypass", "Gastroplasty", "Jejunoileal Bypass", "Bariatric Surgery". RESULTS: Seven manuscripts were included; the great majority studied the central effects of Roux en Y gastric bypass, using positron emission tomography or functional magnetic resonance. CONCLUSIONS: Bariatric surgery might normalize the activity of central areas concerned with reward and incentive salience processing, as the nucleus accumbens and mesencephalic tegmental ventral area, as well as circuitries processing behavioral inhibition, as the dorsolateral prefrontal cortex.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This article is a transcription of an electronic symposium in which some active researchers were invited by the Brazilian Society for Neuroscience and Behavior (SBNeC) to discuss the last decade's advances in neurobiology of learning and memory. The way different parts of the brain are recruited during the storage of different kinds of memory (e.g., short-term vs long-term memory, declarative vs procedural memory) and even the property of these divisions were discussed. It was pointed out that the brain does not really store memories, but stores traces of information that are later used to create memories, not always expressing a completely veridical picture of the past experienced reality. To perform this process different parts of the brain act as important nodes of the neural network that encode, store and retrieve the information that will be used to create memories. Some of the brain regions are recognizably active during the activation of short-term working memory (e.g., prefrontal cortex), or the storage of information retrieved as long-term explicit memories (e.g., hippocampus and related cortical areas) or the modulation of the storage of memories related to emotional events (e.g., amygdala). This does not mean that there is a separate neural structure completely supporting the storage of each kind of memory but means that these memories critically depend on the functioning of these neural structures. The current view is that there is no sense in talking about hippocampus-based or amygdala-based memory since this implies that there is a one-to-one correspondence. The present question to be solved is how systems interact in memory. The pertinence of attributing a critical role to cellular processes like synaptic tagging and protein kinase A activation to explain the memory storage processes at the cellular level was also discussed.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Breeding for high and low hypothermic responses to systemic administration of a serotonin1A (5-HT1A) receptor agonist (8-hydroxy-2-(di-n-propylamino)tetralin, 8-OH-DPAT) has resulted in high DPAT-sensitive (HDS) and low DPAT-sensitive (LDS) lines of rats, respectively. These lines also differ in several behavioral measures associated with stress. In the present microdialysis study we observed that basal 5-HT concentrations in the prefrontal cortex and dorsal hippocampus did not differ significantly between HDS and LDS rats. Thus, behavioral differences between the HDS and LDS lines might not be attributed to differences in basal 5-HT release. However, both lines had lower basal levels of 5-HT release than their randomly bred control group (random DPAT-sensitive, RDS) in the prefrontal cortex (mean ± SEM, pg/20 µl, was 3.0 ± 0.4 for LDS, 3.8 ± 0.3 for HDS and 6.4 ± 0.6 for RDS; F(2,59) = 5.8, P<0.005). The administration of (±)-fenfluramine (10 mg/kg) induced a greater increase in hippocampal 5-HT levels in HDS rats (500%) as compared with LDS (248%) or RDS (243%) rats (P<0.0001). There were no significant differences in the prefrontal cortex among lines, with a fenfluramine-induced 5-HT increase of about 900% in the three groups. This differential response to fenfluramine may be due to functional alterations of hippocampal 5-HT reuptake sites in the HDS line.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Happy emotional states have not been extensively explored in functional magnetic resonance imaging studies using autobiographic recall paradigms. We investigated the brain circuitry engaged during induction of happiness by standardized script-driven autobiographical recall in 11 healthy subjects (6 males), aged 32.4 ± 7.2 years, without physical or psychiatric disorders, selected according to their ability to vividly recall personal experiences. Blood oxygen level-dependent (BOLD) changes were recorded during auditory presentation of personal scripts of happiness, neutral content and negative emotional content (irritability). The same uniform structure was used for the cueing narratives of both emotionally salient and neutral conditions, in order to decrease the variability of findings. In the happiness relative to the neutral condition, there was an increased BOLD signal in the left dorsal prefrontal cortex and anterior insula, thalamus bilaterally, left hypothalamus, left anterior cingulate gyrus, and midportions of the left middle temporal gyrus (P < 0.05, corrected for multiple comparisons). Relative to the irritability condition, the happiness condition showed increased activity in the left insula, thalamus and hypothalamus, and in anterior and midportions of the inferior and middle temporal gyri bilaterally (P < 0.05, corrected), varying in size between 13 and 64 voxels. Findings of happiness-related increased activity in prefrontal and subcortical regions extend the results of previous functional imaging studies of autobiographical recall. The BOLD signal changes identified reflect general aspects of emotional processing, emotional control, and the processing of sensory and bodily signals associated with internally generated feelings of happiness. These results reinforce the notion that happiness induction engages a wide network of brain regions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The aim of the present study was to determine whether specific subgroups of schizophrenic patients, grouped according to electrodermal characteristics, show differences in the N-acetylaspartate/creatine plus choline (NAA / (Cr + Cho)) ratios in the frontal, cingulate and perirolandic cortices. Skin conductance levels (SCL) and skin conductance responses to auditory stimulation were measured in 38 patients with schizophrenia and in the same number of matched healthy volunteers (control). All subjects were submitted to multivoxel proton magnetic resonance spectroscopic imaging. When compared to the control group, patients presented significantly lower NAA / (Cr + Cho) ratios in the right dorsolateral prefrontal cortex (schizophrenia = 0.95 ± 0.03; control = 1.12 ± 0.04) and in the right (schizophrenia = 0.88 ± 0.02; control = 0.94 ± 0.03) and left (schizophrenia = 0.84 ± 0.03; control = 0.94 ± 0.03) cingulates. These ratios did not differ between electrodermally responsive and non-responsive patients. When patients were divided into two groups: lower SCL (less than the mean SCL of the control group minus two standard deviations) and normal SCL (similar to the control group), the subgroup with a lower level of SCL showed a lower NAA / (Cr + Cho) ratio in the left cingulate (0.78 ± 0.05) than the controls (0.95 ± 0.02, P < 0.05) and the subgroup with normal SCL (0.88 ± 0.03, P < 0.05). There was a negative correlation between the NAA / (Cr + Cho) ratio in the left cingulate of patients with schizophrenia and the duration of the disease and years under medication. These data suggest the existence of a schizophrenic subgroup characterized by low SCL that could be a consequence of the lower neuronal viability observed in the left cingulate of these patients.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The mammalian stress response is an integrated physiological and psychological reaction to real or perceived adversity. Glucocorticoids are an important component of this response, acting to redistribute energy resources to both optimize survival in the face of challenge and to restore homeostasis after the immediate challenge has subsided. Release of glucocorticoids is mediated by the hypothalamo-pituitary-adrenal (HPA) axis, driven by a neural signal originating in the paraventricular nucleus (PVN). Stress levels of glucocorticoids bind to glucocorticoid receptors in multiple body compartments, including the brain, and consequently have wide-reaching actions. For this reason, glucocorticoids serve a vital function in negative feedback inhibition of their own secretion. Negative feedback inhibition is mediated by a diverse collection of mechanisms, including fast, non-genomic feedback at the level of the PVN, stress-shut-off at the level of the limbic system, and attenuation of ascending excitatory input through destabilization of mRNAs encoding neuropeptide drivers of the HPA axis. In addition, there is evidence that glucocorticoids participate in stress activation via feed-forward mechanisms at the level of the amygdala. Feedback deficits are associated with numerous disease states, underscoring the necessity for adequate control of glucocorticoid homeostasis. Thus, rather than having a single, defined feedback ‘switch’, control of the stress response requires a wide-reaching feedback ‘network’ that coordinates HPA activity to suit the overall needs of multiple body systems.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Previous cross-sectional magnetic resonance imaging (MRI) studies of healthy aging in young adults have indicated the presence of significant inverse correlations between age and gray matter volumes, although not homogeneously across all brain regions. However, such cross-sectional studies have important limitations and there is a scarcity of detailed longitudinal MRI studies with repeated measures obtained in the same individuals in order to investigate regional gray matter changes during short periods of time in non-elderly healthy adults. In the present study, 52 healthy young adults aged 18 to 50 years (27 males and 25 females) were followed with repeated MRI acquisitions over approximately 15 months. Gray matter volumes were compared between the two times using voxel-based morphometry, with the prediction that volume changes would be detectable in the frontal lobe, temporal neocortex and hippocampus. Voxel-wise analyses showed significant (P < 0.05, family-wise error corrected) relative volume reductions of gray matter in two small foci located in the right orbitofrontal cortex and left hippocampus. Separate comparisons for males and females showed bilateral gray matter relative reductions in the orbitofrontal cortex over time only in males. We conclude that, in non-elderly healthy adults, subtle gray matter volume alterations are detectable after short periods of time. This underscores the dynamic nature of gray matter changes in the brain during adult life, with regional volume reductions being detectable in brain regions that are relevant to cognitive and emotional processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cylindrical specimens of bone measuring 15 mm in diameter were obtained from the lateral cortical layer of 10 pairs of femurs and tibias. A central hole 3.2 mm in diameter was drilled in each specimen. The hole was tapped, and a 4.5 mm cortical bone screw was inserted from the outer surface. The montage was submitted to push-out testing up to a complete strip of the bone threads. The cortical thickness and rupture load were measured, and the shear stress was calculated. The results were grouped according to the bone segment from which the specimen was obtained. The results showed that bone cortex screw holding power is dependent on the bone site. Additionally, the diaphyseal cortical bone tissue is both quantitatively and qualitatively more resistant to screw extraction than the metaphyseal tissue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Em um caso fatal de ophidismo, em individuo de 15 annos de edade, picado por uma cobra jararaca (Bothrops jararaca) na face externa da perna direita e que veio a fallecer 26 dias apoz o accidente, os A.A, descrevem as lesões anatomo-pathologicas encontradas e as modificações do metabolismo, evidenciadas pelos exames chimicos do sangue. As principaes alterações existentes, acham-se localisadas nos rins os quaes apresentam lesões de glomerulonephrite diffusa e o aspecto typico da necrose cortical symmetrica. Como alterações de maior significação observam-se ainda lesões vasculares de grande intensidade e constituidas essencialmente por processo de endoarterite productiva. A necrose symmetrica da cortex renal, a vista das intensas alterações vasculares (endoarterite productiva) que acarretaram a obliteração das arterías, é considerada como a consequencia immediata de taes lesões vasculares. Os vasos renaes, séde do processo inflammatorio, são as arterias interlobar, arciforme e interlobular, mas principalmente as arteriolares da camada cortical. O processo de endoarterite assume sempre o carater progressivo, de modo que a luz vascular vae sendo aos poucos, totalmente obstruida. Ao contrario do que se tem observado nos casos de necrose cortical symmetrica, citados na literatura, em que as alterações parenchymatosas são consequentes a thrombose dos vasos reanes, no caso presente esse aspecto não foi verificado mas tão sómente a existencia da endoarterite productiva obliterante. Consideram os A.A. as lesões renaes no caso que estudaram, como a resultante da actuação lenta e prolongada do veneno de cobra sobre as estructuras renaes, baseados nos seguintes factos já conhecidos e admittidos: eliminação do veneno de cobra pelos rins; capacidade do mesmo veneno, determinar a glomerulo-nephrite diffusa e acção do veneno de cobra sobre o endothelio vascular, facilitada essencialmente pela funcção especifica do orgão. As modificações do metabolismo se traduziram por alterações urinarias e sanguineas. As urinas foram emitidas em muito pequena quantidade (50 cc. em 24 horas) não havendo comtudo, anuria absoluta. Cylindros hyalinos e granulosos, bem como leucocytos e cellulas renaes, associadas á albuminoria, era presentes. Os exames chimicos do sangue, revelaram: Proteinas totaes 7,61 grs. em 1000 cc.; Albumina 2,39 grs em 1000 cc.; Globulina 5,22 grs. em 1000 cc.; Uréa 6,42 grs. em 1000 cc.; Fibrinogeneo 0,324 grs. em 1000 cc.; Indican +++; Cl. plasmatico 339 mgrs. em 100 cc.; Cl. globular 170 mgrs. em 100 cc.; Cholesterol 163 mgrs. em 100 cc.; Creatinia 260 mgrs. em 100 cc.; Ph. inorganico 13,4 mgrs. em 100 cc.; Calcio 10,3 mgrs em 100 cc.; Potassio 28 mgrs. em 100 cc.; Sodio 328 mgrs. em 100 cc.. O exame hematologico revelou 11% de hemoglobina; 960.000 hematias por mm.³; e 5.200 leucocytos por mm.³. A formula leucocytaria revelou augmento dos neutrophilos, com 74% dos segmentados. A proporção entre sôro o coagulo foi 9 x 3 cc. A reacção de Wassermann no sôro sanguineo foi negativa. A insufficiencia renal se traduziu no caso em estudo, por modificações humoraes, particularmente pela azotemia elevada, pelo augmento da creatinina, do phosphoro inorganico e do indican. Em contraste com a existencia de taes modificações, o doente não apresentou os signaes clinicos observados nos casos emque a azotemia se mantem elevada, reproduzindo tal facto, o quadro clinico descripto para a necrose symmetrica da cortex renal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to estimate the diagnostic value of renal cortex copper (Cu) concentration in clinical cases of acute copper poisoning (ACP). A total of 97 calves that died due to subcutaneous copper administration were compiled in eleven farms. At least, one necropsy was conducted on each farm and samples for complementary analysis were taken. The degree of autolysis in each necropsy was evaluated. The cases appeared on extensive grazing calf breeding and intensive feedlot farms, in calves of 60 to 200 kg body weight. Mortality varied from 0.86 to 6.96 %, on the farms studied. The first succumbed calf was found on the farms between 6 and 72 hours after the susbcutaneous Cu administration. As discrepancies regarding the reference value arose, the local value (19.9 parts per million) was used, confirming the diagnosis of acute copper poisoning in 93% of the analyzed kidney samples. These results confirm the value of analysis of the cortical kidney Cu concentration for the diagnosis of acute copper poisoning.