24 resultados para post-transcriptional regulation

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trypanosoma cruzi, a protozoan parasite that causes Chagas disease, exhibits unique mechanisms for gene expression such as constitutive polycistronic transcription of protein-coding genes, RNA editing and trans-splicing. In the absence of mechanism controlling transcription initiation, organized subsets of T. cruzi genes must be post-transcriptionally co-regulated in response to extracellular signals. The mechanisms that regulate stage-specific gene expression in this parasite have become much clearer through sequencing its whole genome as well as performing various proteomic and microarray analyses, which have demonstrated that at least half of the T. cruzi genes are differentially regulated during its life cycle. In this review, we attempt to highlight the recent advances in characterising cis and trans-acting elements in the T. cruzi genome that are involved in its post-transcriptional regulatory machinery.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using cDNA microarray analysis, we previously identified a set of differentially expressed genes in primary breast tumors based on the status of estrogen and progesterone receptors. In the present study, we performed an integrated computer-assisted and manual search of potential estrogen response element (ERE) binding sites in the promoter region of these genes to characterize their potential to be regulated by estrogen receptors (ER). Publicly available databases were used to annotate the position of these genes in the genome and to extract a 5’flanking region 2 kb upstream to 2 kb downstream of the transcription start site for transcription binding site analysis. The search for EREs and other binding sites was performed using several publicly available programs. Overall, approximately 40% of the genes analyzed were potentially able to be regulated by estrogen via ER. In addition, 17% of these genes are located very close to other genes organized in a head-to-head orientation with less than 1.0 kb between their transcript units, sharing a bidirectional promoter, and could be classified as bidirectional gene pairs. Using quantitative real-time PCR, we further investigated the effects of 17β-estradiol and antiestrogens on the expression of the bidirectional gene pairs in MCF-7 breast cancer cells. Our results showed that some of these gene pairs, such as TXNDC9/EIF5B, GALNS/TRAPPC2L, and SERINC1/PKIB, are modulated by 17β-estradiol via ER in MCF-7 breast cancer cells. Here, we also characterize the promoter region of potential ER-regulated genes and provide new information on the transcriptional regulation of bidirectional gene pairs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, several Leishmania infantum genes have been cloned and characterized. Here, we have summarized the available information on the gene organization and expression in this protozoan parasite. From a comparative analysis, the following outstanding features were found to be common to most of the genes characterized: tandemly organized genes with conserved coding regions and divergent untranslated regions, polycistronic transcription and post-transcriptional regulation of gene expression. The analysis of chromosomes of L. infantum by pulsed-field electrophoresis showed the existence of both size and number polymorphisms such that each strain has a distinctive molecular karyotype. Despite this variability, highly conserved physical linkage groups exists among different strains of L. infantum and even among Old World Leishmania species. Gene mapping on the L. infantum molecular karyotype evidenced a bias in chromosomal distribution of, at least, the evolutionary conserved genes

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Trypanosomes are parasitic protozoa in which gene expression is primarily controlled through the regulation of mRNA stability and translation. This post-transcriptional control is mediated by various families of RNA-binding proteins, including those with zinc finger CCCH motifs. CCCH zinc finger proteins have been shown to be essential to differentiation events in trypanosomatid parasites. Here, we functionally characterise TcZFP2 as a predicted post-transcriptional regulator of differentiation in Trypanosoma cruzi. This protein was detected in cell culture-derived amastigotes and trypomastigotes, but it was present in smaller amounts in metacyclic trypomastigote forms of T. cruzi. We use an optimised recombinant RNA immunopreciptation followed by microarray analysis assay to identify TcZFP2 target mRNAs. We further demonstrate that TcZFP2 binds an A-rich sequence in which the adenosine residue repeats are essential for high-affinity recognition. An analysis of the expression profiles of the genes encoding the TcZFP2-associated mRNAs throughout the parasite life cycle by microarray hybridisation showed that most of the associated mRNAs were upregulated in the metacyclic trypomastigote forms, also suggesting a role for TcZFP2 in metacyclic trypomastigote differentiation. Knockdown of the orthologous Trypanosoma brucei protein levels showed ZFP2 to be a positive regulator of specific target mRNA abundance.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The study of mechanisms which control gene expression in trypanosomatids has developed at an increasing rate since 1989 when the first successful DNA transfection experiments were reported. Using primarily Trypanosoma brucei as a model, several groups have begun to elucidate the basic control mechanisms and to define the cellular factors involved in mRNA transcription, processing and translation in these parasites. This review focuses on the most recent studies regarding a subset of genes that are expressed differentially during the life cycle of three groups of parasites. In addition to T. brucei, I will address studies on gene regulation in a few species of Leishmania and the results obtained by a much more limited group of laboratories studying gene expression in Trypanosoma cruzi. It is becoming evident that the regulatory strategies chosen by different species of trypanosomatids are not similar, and that for these very successful parasites it is probably advantageous to employ multiple mechanisms simultaneously. In addition, with the increasing numbers of parasite genes that have now been submitted to molecular dissection, it is also becoming evident that, among the various strategies for gene expression control, there is a predominance of regulatory pathways acting at the post-transcriptional level.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Parasite differentiation from proliferating tachyzoites into latent bradyzoites is central to pathogenesis and transmission of the intracellular protozoan pathogen Toxoplasma gondii. The presence of bradyzoite-containing cysts in human hosts and their subsequent rupture can cause life-threatening recrudescence of acute infection in the immunocompromised and cyst formation in other animals contributes to zoonotic transmission and widespread dissemination of the parasite. In this review, we discuss the evidence showing how the clinically relevant process of bradyzoite differentiation is regulated at both transcriptional and post-transcriptional levels. Specific regulatory factors implicated in modulating bradyzoite differentiation include promoter-based cis-elements, epigenetic modifications and protein translation control through eukaryotic initiation factor -2 (eIF2). In addition to a summary of the current state of knowledge in these areas we discuss the pharmacological ramifications and pose some questions for future research.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Sixteen transgenic yellow passionfruit (Passiflora spp.) plants (R0) were obtained which express a non-translatable transgenic RNA corresponding to the 3' region of the NIb gene and the 5' region of the CP gene, derived from the genome of a Brazilian isolate of Cowpea aphid-borne mosaic virus (CABMV). The transgenic plants were propagated by stem cuttings and challenged by sap inoculation with isolates CABMV-MG1 and CABMV-PE1. One transgenic plant (TE5-10) was resistant to the isolate CABMV-MG1, but susceptible to CABMV-PE1. The remaining transgenic plants developed systemic symptoms, equal to non-transformed plants, when inoculated with either isolate. The absence of virus in TE5-10 plants was confirmed by indirect ELISA. Transcription analysis of the transgene demonstrated that the TE5-10 plant did not accumulate transgenic mRNA, even before inoculation. After inoculation, viral RNA was only detected in plants inoculated with CABMV-PE1. These results confirm that the transgenic plant TE5-10 is resistant to isolate CABMV-MG1, and suggest that the resistance mechanism is post-transcriptional gene silencing, which is already activated in the transgenic plants before virus inoculation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The stability of penicillin-binding protein 3 (PBP3), a cell septum synthesizing protein, was analyzed at different incubation temperatures in three Escherichia coli K12 strains carrying a PBP3-overproducing plasmid. The stability of PBP3 was significantly reduced in stationary phase cells shifted to 42°C for 4 h, compared to samples incubated at 28 or 37°C. The half-life of PBP3 in the C600 strain was 60 min at 42°C, while samples incubated at 28 or 37°C had PBP3 half-lives greater than 4 h. Analysis of the PBP3 content in mutants deficient in rpoS (coding for the stationary phase sigma factor, sigmaS) and rpoH (coding for the heat shock sigma factor, sigma32) genes after shift to 42°C showed that stability of the protein was controlled by sigmaS but not by sigma32. These results suggest that control of the PBP3 levels in E. coli K12 is through a post-transcriptional mechanism regulated by the stationary phase regulon. We demonstrated that stability of PBP3 in E. coli K12 involves degradation of the protein. Moreover, we observed that incubation of cells at 42°C significantly reduces the stability of PBP3 in early stationary phase cells in a process controlled by sigmaS.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

TGF-ß1 regulates both cellular growth and phenotypic plasticity important for maintaining a growth advantage and increased invasiveness in progressively malignant cells. Recent studies indicate that TGF-ß-1 stimulates the conversion of epitheliod to fibroblastoid phenotype which presumably leads to the inactivation of growth-inhibitory effects by TGF-ß1 (Portella et al. (1998) Cell Growth and Differentiation, 9: 393-404). Therefore, the investigation of TGF-ß1 signaling that leads to altered growth and migration may provide novel targets for the prevention of increased cell growth and invasion. Although much attention has been paid to TGF-ß1 responses in epithelial cells, the above studies suggest that examination of signal transduction pathways in fibroblasts are important as well. Data from our laboratory are consistent with the concept that TGF-ß1 can act as a regulatory switch in density-dependent C3H 10T1/2 fibroblasts capable of either promoting or delaying G1 traverse. The regulation of this switch is proposed to occur prior to pRb phosphorylation, namely prior to activation of cyclin-dependent kinases. The current study is concerned with the evaluation of a key cyclin (cyclin D1) which activates cdk4 and p27KIP1 which in turn inhibit cdk2 in the proliferative responses of epidermal growth factor (EGF) and platelet-derived growth factor (PDGF) and their modulation by TGF-ß1. Although the molecular events that lead to elevation of cyclin D1 are not completely understood, it appears likely that activation of p42/p44MAPK kinases is involved in its transcriptional regulation. TGF-ß1 delayed EGF- or PDGF-induced cyclin D1 expression and blocked the induction of active p42/p44MAPK. The mechanism by which TGF-ß1 induces a block in p42/p44MAPK activation is being examined and the possibility that TGF-ß1 regulates phosphatase activity is being tested.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The treatment of some mesenchymal malignancies has made significant gains over the past few decades with the development of effective systemic therapies. In contrast, the treatment of chondrosarcoma has been limited to surgical resection, with the most significant prognostic indicators being surgical margins and histologic grade. We have reported that MMP-1/TIMP-1 gene expression serves to prognosticate for tumor recurrence in this group of patients. This led to the hypothesis that collagenase activity facilitates cell egression from the cartilaginous matrix. In the current study we examine the specificity of collagenase gene expression in archival human chondrosarcoma samples using semi-quantitative PCR. Messenger RNA was affinity extracted and subject to reverse transcription. The subsequent cDNA was amplified using novel primers and quantitated by densitometry. Ratios of gene expression were constructed and compared to disease-free survival. The data demonstrate that the significance of the MMP-1/TIMP-1 ratio as a predictor of recurrence is confirmed with a larger number of patients. Neutrophil collagenase or MMP-8 was observed in only 5 of 29 samples. Collagenase-3 or MMP-13 was observed in all samples but the level did not correlate with disease-free survival. Since the collagenases have similar activity for fibrillar collagens and cleave the peptide in the same location, post-transcriptional regulatory mechanisms may account for the observed specificity. The determination of the MMP-1/TIMP-1 gene expression ratio not only serves to identify those patients at risk for recurrence but may also serve as a novel therapeutic avenue as an adjunct to surgical resection.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The RECK gene was initially isolated as a transformation suppressor gene encoding a novel membrane-anchored glycoprotein and later found to suppress tumor invasion and metastasis by regulating matrix metalloproteinase-9. Its expression is ubiquitous in normal tissues, but undetectable in many tumor cell lines and in fibroblastic lines transformed by various oncogenes. The RECK gene promoter has been cloned and characterized. One of the elements responsible for the oncogene-mediated downregulation of mouse RECK gene is the Sp1 site, where the Sp1 and Sp3 factors bind. Sp1 transcription factor family is involved in the basal level of promoter activity of many genes, as well as in dynamic regulation of gene expression; in a majority of cases as a positive regulator, or, as exemplified by the oncogene-mediated suppression of RECK gene expression, as a negative transcription regulator. The molecular mechanisms of the downregulation of mouse RECK gene and other tumor suppressor genes are just beginning to be uncovered. Understanding the regulation of these genes may help to develop strategies to restore their expression in tumor cells and, hence, suppress the cells' malignant behavior.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The threat of free radical damage is opposed by coordinated responses that modulate expression of sets of gene products. In mammalian cells, 12 proteins are induced by exposure to nitric oxide (NO) levels that are sub-toxic but exceed the level needed to activate guanylate cyclase. Heme oxygenase 1 (HO-1) synthesis increases substantially, due to a 30- to 70-fold increase in the level of HO-1 mRNA. HO-1 induction is cGMP-independent and occurs mainly through increased mRNA stability, which therefore indicates a new NO-signaling pathway. HO-1 induction contributes to dramatically increased NO resistance and, together with the other inducible functions, constitutes an adaptive resistance pathway that also defends against oxidants such as H2O2. In E. coli, an oxidative stress response, the soxRS regulon, is activated by direct exposure of E. coli to NO, or by NO generated in murine macrophages after phagocytosis of the bacteria. This response is governed by the SoxR protein, a homodimeric transcription factor (17-kDa subunits) containing [2Fe-2S] clusters essential for its activity. SoxR responds to superoxide stress through one-electron oxidation of the iron-sulfur centers, but such oxidation is not observed in reactions of NO with SoxR. Instead, NO nitrosylates the iron-sulfur centers of SoxR both in vitro and in intact cells, which yields a form of the protein with maximal transcriptional activity. Although nitrosylated SoxR is very stable in purified form, the spectroscopic signals for the nitrosylated iron-sulfur centers disappear rapidly in vivo, indicating an active process to reverse or eliminate them.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Neurotransmitters are also involved in functions other than conventional signal transfer between nerve cells, such as development, plasticity, neurodegeneration, and neuroprotection. For example, there is a considerable amount of data indicating developmental roles for the glutamatergic, cholinergic, dopaminergic, GABA-ergic, and ATP/adenosine systems. In this review, we discuss the existing literature on these "new" functions of neurotransmitters in relation to some unconventional neurotransmitters, such as the endocannabinoids and nitric oxide. Data indicating both transcriptional and post-transcriptional modulation of endocannabinoid and nitrinergic systems after neural lesions are discussed in relation to the non-conventional roles of these neurotransmitters. Knowledge of the roles of neurotransmitters in brain functions other than information transfer is critical for a more complete understanding of the functional organization of the brain and to provide more opportunities for the development of therapeutical tools aimed at minimizing neuronal death.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The control of nitrogen metabolism in pathogenic Gram-positive bacteria has been studied in a variety of species and is involved with the expression of virulence factors. To date, no data have been reported regarding nitrogen metabolism in the odontopathogenic species Streptococcus mutans. GlnR, which controls nitrogen assimilation in the related bacterial species, Bacillus subtilis, was assessed in S. mutans for its DNA and protein binding activity. Electrophoretic mobility shift assay of the S. mutans GlnR protein indicated that GlnR binds to promoter regions of the glnRA and amtB-glnK operons. Cross-linking and pull-down assays demonstrated that GlnR interacts with GlnK, a signal transduction protein that coordinates the regulation of nitrogen metabolism. Upon formation of this stable complex, GlnK enhances the affinity of GlnR for the glnRA operon promoter. These results support an involvement of GlnR in transcriptional regulation of nitrogen metabolism-related genes and indicate that GlnK relays information regarding ammonium availability to GlnR.