6 resultados para polynomials
em Scielo Saúde Pública - SP
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
The authors studied the rainfall in Pesqueira (Pernambuco, Brasil) in a period of 48 years (1910 through 1957) by the method of orthogonal polynomials, degrees up to the fourth having been tried. None of them was significant, so that it seems that no trend is present. The mean observed was 679.00 mm., with standard error of the mean 205.5 mm., and a 30.3% coefficient of variation. The 95% level of probability would include annual rainfall from 263.9 up to 1094.1mm.
Resumo:
This paper deals with the study by orthogonal polynomials of trends in the mean annual and mean monthly temperatures (in degrees Centigrade) in Campinas (State of São Paulo, Brasil), from 1890 up to 1956. Only 4 months were studied (January, April, July and October) taken as typical of their respective season. For the annual averages both linear and quadratic components were significant, the regression equation being y = 19.95 - 0.0219 x + 0.00057 x², where y is the temperature (in degrees Centigrade) and x is the number of years after 1889. Thus 1890 corresponds to x = 1, 1891, to x = 2, etc. The equation shows a minimum for the year 1908, with a calculated mean y = 19.74. The expected means by the regression equation are given below. Anual temperature means for Campinas (SP, Brasil) calculated by the regression equation Year Annual mean (Degrees Centigrade) 1890 19.93 1900 10.78 1908 19.74 (minimum) 1010 19.75 1920 19.82 1930 20.01 1940 20.32 1950 20.74 1956 21.05 The mean for 67 years was 20.08°C with standard error of the mean 0.08°G. For January the regression equation was y = 23.08 - 0.0661 x + 0.00122 x², with a minimum of 22.19°C for 1916. The average for 67 years was 22.70°C, with standard error 0.12°C. For April no component of regression was significant. The average was 20.42°C, with standard error 0.13°C. For July the regression equation was of first degree, y = 16.01 + 0.0140X. The average for 67 years was 16.49°C, with standard error of the mean 0.14°C. Finally, for October the regression equation was y = 20.55 - 0.0362x + 0.00078x², with a minimum of 20.13°C for 1912. The average was 20.52°C, with standard error of the mean equal to 0.14°C.
Resumo:
The arbitrary angular momentum solutions of the Schrödinger equation for a diatomic molecule with the general exponential screened coulomb potential of the form V(r) = (- a / r){1+ (1+ b )e-2b } has been presented. The energy eigenvalues and the corresponding eigenfunctions are calculated analytically by the use of Nikiforov-Uvarov (NU) method which is related to the solutions in terms of Jacobi polynomials. The bounded state eigenvalues are calculated numerically for the 1s state of N2 CO and NO
Resumo:
A model for predicting temperature evolution for automatic controling systems in manufacturing processes requiring the coiling of bars in the transfer table is presented. Although the method is of a general nature, the presentation in this work refers to the manufacturing of steel plates in hot rolling mills. The predicting strategy is based on a mathematical model of the evolution of temperature in a coiling and uncoiling bar and is presented in the form of a parabolic partial differential equation for a shape changing domain. The mathematical model is solved numerically by a space discretization via geometrically adaptive finite elements which accomodate the change in shape of the domain, using a computationally novel treatment of the resulting thermal contact problem due to coiling. Time is discretized according to a Crank-Nicolson scheme. Since the actual physical process takes less time than the time required by the process controlling computer to solve the full mathematical model, a special predictive device was developed, in the form of a set of least squares polynomials, based on the off-line numerical solution of the mathematical model.
Resumo:
In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.