54 resultados para polar stationary phases
em Scielo Saúde Pública - SP
Resumo:
Hydrophilic interaction liquid chromatography (HILIC) has been gaining increased attention for its effective separation of highly polar compounds, which include carbohydrates, amino acids, pharmaceutical compounds, proteins, glycoproteins, nucleosides, etc. Polar compounds are usually poorly retained on reverse-phase liquid chromatography (RP-HPLC) columns or have poor solubility in the apolar mobile phase of normal-phase high performance liquid chromatography (NP-HPLC). Since HILIC uses organic solvents such as ACN or MeOH ( > 70%), also used in RP-HPLC and polar stationary phases similar to NP-HPLC (bare silica, diol, amino, amide, saccharide, zwitterionic stationary phases, etc.), it represents a hybrid of the two separation modes. The high organic content in the MP leads to good compatibility with mass spectrometry (MS), increasing the detectivity. This review describes the fundamentals of HILIC and highlights some interesting applications.
Resumo:
The developments in stationary phase synthesis and capillary column technology, have opened new perspectives in analysis of high molecular mass compounds (³600 daltons) and thermolabile organic compounds by High Temperature High Resolution Gas Chromatography (HT-HRGC). HT-HRGC is a new analytical borderline and its application to the analysis of high molecular mass compounds is still in its infancy. The apolar and medium polar gum phases can now be operated at temperatures up to 400-480ºC, being used for the analysis of n-alcanes up to C-100, lipids, oligosaccharides, industrial resins, polyglycerols, cyclodextrins, porphyrins, etc. This technique should play a leading role as a powerful tool, for many different analysis types, in multidisciplinary fields of Science.
Resumo:
The present work reviews recent advances in the preparation of new reversed phase packing materials such as sterically protected, bidentate, hybrid organic-inorganic and monolithic phases and phases containing embedded polar groups. The bonding chemistry involved in the preparation of these phases as well as their advantages over conventional C8 and C18 reversed phases are discussed. Understanding the reasons behind the development of these newer column packings helps analysts select the best stationary phase for a given application.
Resumo:
This review first discusses the limitations of many of the supports and stationary phases used in reversed phase high performance liquid chromatography and then describes those, developed more recently, that present better stabilities and more versatile selectivities. Emphases will be given to stationary phases that use higher purity silicas, hybrid silicas, monolithic silicas, metallic oxides and mixed oxides as supports and those that have embedded polar groups or contain phenyl or fluoro groups as the stationary phase as well as the phases used for mixed mode or hydrophilic interaction separations. These modern stationary phases facilitate the analysis of complex mixtures.
Resumo:
The pyrethroids bifenthrin, permethrin, cypermethrin and deltamethrin were extracted by solid phase extraction (SPE) and solid phase microextraction (SPME). The analysis were performed on a gas chromatograph with electron capture detection (GC-ECD). Octadecil Silano-C18, Florisil and Silica stationary phases were studied for SPE. Better results were obtained for Florisil which gave recoveries from 80% to 108%. Pyrethroids extraction by SPME showed a linear response and a detection limit of 10 pg ml-1. Although the data showed that the two extraction methods were able to isolate the pesticide residues from water samples, the best results were obtained by using SPME which is more sensitive, faster, cheeper, being a more useful technique for the analysis of pyrethroids in drinking water.
Resumo:
Particles of porous silica or other solvent resistent inorganic oxides can be functionalized by aliphatic (e.g., C-8 or C-18) or other groups to give stationary phases for use in reversed phase HPLC. The functionalization can be done by bonding of individual groups to the surface of the support particles, by producing an organic polymeric film from pre-polymers, or by adsorbing/immobilizing pre-formed polymers on the surfaces. These three types of functionalization are reviewed.
Resumo:
The demand for analytical methods suitable for accurate and reproducible determination of drug enantiomers has increased significantly in the last years. High-performance liquid chromatography (HPLC) using chiral stationary phases and capillary electrophoresis (CE) are the most important techniques used for this purpose. In this paper, the fundamental aspects of chiral separations using both techniques are presented. Some important aspects for the development of enantioselective methods, particularly for the analysis of drugs and metabolites in biological samples, are also discussed.
Resumo:
Monolithic stationary phases represent a new generation of chromatographic separation media. These phases consist of a continuous separation bed prepared by in situ polymerization or consolidation inside the column tubing. In recent years, their simple preparation procedure, unique properties and excellent performance have attracted quite remarkable attention in liquid chromatography and capillary electrochromatography. This review summarizes the preparation, characterization and applications of monolithic stationary phases. The analytical potential of these columns is demonstrated with separations involving various families of compounds in different separation modes.
Resumo:
There is great interest nowadays in the use of preparative liquid chromatography as an effective tool for the production of enantiomerically pure, or enriched, compounds for the pharmaceutical industry. To make the chromatographic process economically attractive, attention is now focused on the choice of the chromatographic operating mode to minimize eluent consumption and to maximize productivity. Among the alternatives to the traditional batch chromatography, attention is now shifting towards simulated moving bed (SMB) technologies and a review covering the latest developments in this area seems timely. Several aspects of this important analytical technique are presented and details concerning the SMB technology for process optimization are outlined.
Resumo:
Based on a specially created mass spectral database utilizing 23 tetradecenyl and 22 hexadecenyl acetate standards along with Kóvats retention indices obtained on a very polar stationary phase [poly (biscyanopropyl siloxane)] (SP 2340), (Z)-9-hexadecenyl acetate, (Z)-11-hexadecenyl acetate and (E)-8-hexadecenyl acetate were identified in active pheromone extracts of Elasmopalpus lignosellus. This identification was more efficient than our previous study using gas chromatography/mass spectrometry with a dimethyl disulfide derivative where we could only identify the first two acetates. The acetate composition of the pheromone gland differed from region to region in Brazil and from that from the Tifton (GA, USA) population, suggesting polymorphism or a different sub-species.
Resumo:
Chromatography is a means of separating mixtures into their several components. TLC, mainly a liquid/solid process, is one of the separation techniques most often used. It is indispensable in laboratories dealing with natural products, organic and analytical chemistry. Commercial chromatography plates are offered at relatively high cost. In this work the construction of a hand-operated plate coater of stationary phases of low cost and good reproducibility is described to be used in teaching laboratories and research.
Resumo:
This paper presents a simple and practical thermogravimetric method for determining the layer thickness of immobilized polymer stationary phases used in reversed-phase high-performance liquid chromatography. In this method, the weight loss of different polysiloxanes immobilized onto chromatographic supports, determined over the temperature range 150-650 ºC, demonstrated excellent agreement with the sum of carbon and hydrogen content obtained by elemental analysis. The results presented here suggest that the thermogravimetric procedure is an accurate and precise method to determine the polymeric material content on polymer-coated stationary phases.
Resumo:
In this work the separation of the chiral anesthetic compounds ketamine and bupivacaine was development using two chiral stationary phases (CSP). Ketamine enantiomers were well separate in the polysaccharide-based CSP (microcrystalline cellulose triacetate - MCTA) while bupivacaine in the tartardiamide-based CSP (Kromasil CHI-TBB). In both cases, the effect of temperature was investigated under analytical conditions. An improvement in the separation performance with temperature was observed. Thermodynamic parameters were evaluated by the van't Hoff plot. We concluded that enthalpic effects controlled the retention in these chiral columns. The enantiomers of ketamine and bupivacaine were separated under overloaded conditions with a good performance.
Resumo:
The development of Chiral Stationary Phases (CSPs) for high performance liquid chromatography has been studied by various researches around the world, especially, since 1980. This simple interest has been transformed into a tool of great technological value for the industrial community and scholars in general providing the existence of several CSPs, which act through different mechanisms of chiral discrimination. This paper describes the main types of CSPs that are used for the resolution of the majority of chiral compounds.
Resumo:
This review describes the advantages and disadvantages of using capillary liquid chromatography (CLC), which is considered the newest member in the analytical separation science arsenal. Although CLC has tremendous potential for being the next major innovation in separatory analysis, it has not yet obtained great popularity compared to conventional high performance (and ultra-high performance) liquid chromatography. Comparisons are made between these techniques and some of the reasons that CLC has not yet reached its potential will be advanced.