79 resultados para plant stress
em Scielo Saúde Pública - SP
Resumo:
Stressed plants are generally more attacked by galling insects. In this study we investigated the relationship between population abundance and species richness of galling insects on the tree Alchornea castaneaefolia A. JUSS. (Euphorbiaceae), submited to stress induced by the hemiparasite Psittacanthus sp. (Loranthaceae) in the Amazon, Brazil. Branches of A. castaneaefolia attacked by the hemiparasite were more heavily infested by galling insects than non-attacked branches. The field observations partially corroborate the hypothesis that there would be an optimal level of host-plant stress for galling insect establishment.
Resumo:
Growth and development variables and dry matter characteristics were studied for cultivar Snowden of potato (Solanum tuberosum L.) to evaluate nitrogen and plant density influence. Disregarding ending of season plant stress, the average number of actives haulms per plant was five and it was not affected by plant spacing. However, seasonal and final number of active haulms per plant were increased at 200 kg/ha of nitrogen. Maximum stem elongation was reached quickly with double density and had the tendency to keep constant at the highest and lowest nitrogen levels after 70 days after planting. Specific stem mass defined as mass per unit stem length was established as an indirect measure of stem thickness and load capacity. Specific leaf mass position in plant was higher at upper stem leaves, increased as plant density increased and did not vary markedly over time throughout the season. The rate of leaf appearance increased drastically due to more branching caused by high nitrogen level, and increased above ground dry matter per plant. Canopy growth and development influenced main tuber yield components. The number of active tubers per haulm decreased after 60 days after planting showing that tuberization is reversible. Tuber growth functions were established allowing the estimate of dry biomass partitioning coefficients for each plant organ.
Resumo:
Smellmelon, an annual invasive weed of soybean production fields in the north of Iran, reproduces and spreads predominately through seed production. This makes seed bank survival and successful germination essential steps in the invasive process. To evaluate the potential of Smellmelon to invade water-stressed environments, laboratory studies were conducted to investigate the effect of desiccation and salinity at different temperatures on seed germination and seedling growth of Cucumis melo. Seeds were incubated at 25, 30, 35 and 40 ºC in the darkness in a solution (0, -0.2, -0.4, -0.6, -0.8, 1 and 1.2 MPa) of a salt (NaCl), and in a solution (0, -2, -4, -6, -8, -10, -12 bar) of PEG-6000 (Polyethylene glycol), in two separate experiments. The results showed that the highest percentage and rate of germination occurred at 35 ºC in salt concentrations of 0, -0.2, -0.4 MPa and PEG concentrations of 0, -2, -4 bar. Increasing the concentration of salt (NaCl) and PEG limited germination, seedling growth and water uptake but increased the sodium content in the seedlings. No significant difference was observed among 0, -0.2 and -0.4 MPa of NaCl and among 0, -2 and -4 bar of PEG concentration at 35 ºC. The negative effects of PEG were more than those of NaCl on germination percentage and germination rate. Increased stress levels lead to reduction of root and shoot length, and SVL of seedlings. Na+ content of seedling decreased with limited seedling growth of C. melo.
Resumo:
Light and water are important factors that may limit the growth and development of higher plants. The aim of this study was to evaluate photosynthetic parameters and growth in seedlings of Bertholletia excelsa and Carapa guianensis in response to pre-acclimation to full sunlight and mild water stress. I used six independent pre-acclimation treatments (0, 90 (11h15-12h45), 180 (10h30-13h30), 360 (09h00-15h00), 540 (07h30-16h30) and 720 min (06h00-18h00)) varying the time of exposure to full sunlight (PFS) during 30 days, followed by whole-day outdoor exposure for 120 days. Before PFS, the plants were kept in a greenhouse at low light levels (0.8 mol m-2 day-1). The PFS of 0 min corresponded to plants constantly kept under greenhouse conditions. From the beginning to the end of the experiment, each PFS treatment was submitted to two water regimes: moderate water stress (MWS, pre-dawn leaf water potential (ΨL) of -500 to -700 kPa) and without water stress (WWS, ΨL of -300 kPa, soil kept at field capacity). Plants under MWS received only a fraction of the amount of water applied to the well-watered ones. At the end of the 120-day-period under outdoor conditions, I evaluated light saturated photosynthesis (Amax), stomatal conductance (g s), transpiration (E) and plant growth. Both Amax and g s were higher for all plants under the PFS treatment. Stem diameter growth rate and Amax were higher for C. guianensis subjected to MWS than in well-watered plants. The contrary was true for B. excelsa. The growth of seedlings was enhanced by exposure to full sunlight for 180 minutes in both species. However, plants of B. excelsa were sensitive to moderate water stress. The higher photosynthetic rates and faster growth of C. guianensis under full sun and moderate water stress make this species a promissory candidate to be tested in reforestation programs.
Resumo:
Ascorbate peroxidases (APX) are class I heme-containing enzymes that convert hydrogen peroxide into water molecules. The gene encoding APX has been characterized in 11 strains of Trypanosoma cruzi that are sensitive or resistant to benznidazole (BZ). Bioinformatic analysis revealed the presence of two complete copies of the T. cruzi APX (TcAPX) gene in the genome of the parasite, while karyotype analysis showed that the gene was present in the 2.000-kb chromosome of all of the strains analyzed. The sequence of TcAPX exhibited greater levels of similarity to those of orthologous enzymes from Leishmania spp than to APXs from the higher plant Arabidopsis thaliana. Northern blot and real-time reverse transcriptase polymerase chain reaction (RT-PCR) analyses revealed no significant differences in TcAPX mRNA levels between the T. cruzi strains analyzed. On the other hand, Western blots showed that the expression levels of TcAPX protein were, respectively, two and three-fold higher in T. cruzi populations with in vitro induced (17 LER) and in vivo selected (BZR) resistance to BZ, in comparison with their corresponding susceptible counterparts. Moreover, the two BZ-resistant populations exhibited higher tolerances to exogenous hydrogen peroxide than their susceptible counterparts and showed TcAPX levels that increased in a dose-dependent manner following exposure to 100 and 200 µM hydrogen peroxide.
Resumo:
Differences among plants in their ability to support nutritional stress periods may be caused by a differential vacuole capacity of ion storage and release and may also depend on the intensity of nutrient re-translocation under such conditions. In five soybean cultivars, submitted to eight days of P deprivation, the dry matter production and the contents of three phosphorus (P) forms - inorganic (Pi), organic (Po), and acid-soluble total (Pts) of different plant organs were determined. Pi release velocity (RSPi) was estimated as the tangent to the equations obtained for Pi f(t) at the point t = 2 days (the mean point in the period of greatest Pi decrease), considering that -deltaPi/deltat expresses the rate of Pi release. The internal Pi buffering capacity (IBCPi) was calculated as the inverse of the RSPi. Cultivars' differences in size of the non-metabolic Pi pool, RSPi, and the ability to transport Pi from less to more actively metabolizing regions were evaluated. The preferential Pi source and sink compartments under limited P absorption conditions were also evaluated. The cultivar Santa Rosa showed the highest Pi storage ability when the external supply was high, and a more intensive release under low P supply conditions than IAC8 and UFV1. The cultivar Uberaba was superior to Doko in its ability to store and use Pi. In all cultivars, upper leaves and roots were the main sink of Pi stored in the middle and lower leaves. Roots and upper leaves showed larger RSPi and lower IBCPi values than middle and lower leaves.
Resumo:
The objective of this work was to assess the effect of different periods of water stress before harvest of pepper-rosmarin (Lippia sidoides) on the contents of essential oil and flavonoids. The experiment was carried out during 270 days of cultivation, with drainage lysimeters, in a completely randomized block design with five treatments: 0, 2, 4, 6, and 8 days of water suppression before harvest, with four replicates. Fresh and dry matter yield, essential oil content, total flavonoids content, and water potential and temperature of leaves were determined. There was a decrease of approximately 50% in oil content and of 60% in total flavonoid content with the reduction of leaf water potential in 0.3 MPa. Essential oil is more sensitive to water stress than total flavonoids.
Resumo:
The objective was to evaluate the percentage of emergency plantlets and lipid peroxidation in seeds of 29 half-sib progenies of yellow passion fruit (Passiflora edulis Sims.) after 24 months under storage. The experimental design was completely randomized, with four replications of 50 seeds each, from which the treatments were the progenies (1-29). The evaluation of the percent plantlet emergency was accomplished at 14 and 28 days after sowing. The lipid peroxidation of the seeds was expressed as malondialdehyde (MDA) content that was determined by the TBARS method. Approximately 21% of those half-sib progenies maintained the viability of their seeds for twenty-four months under storage. The results point out a remarkable genetic variability for vigor and emergency of the yellow passion fruit plantlets, with occurrence of individuals with high and other ones with low capacity to maintaining the physiologic quality of their seeds after storage.
Resumo:
Eucalypt plantation has high economical importance in Brazil; however, it has been attacked by various pathogens under different environmental stress conditions. Disease resistance and survival under unfavorable environmental conditions have revealed that the eucalypt has developed highly efficient defense systems. Here we show the results of the Eucalyptus ESTs Genome Project (FORESTs). Using the expressed sequence tags (ESTs) obtained by the Project, contigs of similar sequences from each cDNA library induced and not induced by stress agents were formed, and cDNA sequences similar to other already known molecules, such as plant-signaling molecules, phytoalexins, lignin biosynthesis pathways, PR-proteins and putative genes corresponding to enzymes involved in the detoxification of reactive oxygen species, were identified. We also present general considerations about the mechanisms of Eucalyptus defense against biotic and abiotic stresses. These data are of extreme importance for future eucalypt breeding programs aimed at developing plants with enhanced resistance against pathogens and environmental stresses.
Resumo:
ABSTRACTSchizolobium parahyba pv. amazonicum (Huber ex Ducke) Barneby (paricá) occurs naturally in the Amazon and is significant commercial importance due to its rapid growth and excellent performance on cropping systems. The aim of this paper was to evaluate a microbial inoculants such as arbuscular mycorrhiza fungi (AMF) and Rhizobium sp. that promote plant growth. The inocula was 10 g of root colonized and spores of Glomus clarum and/or 1 mL of cell suspension (107 CFU/mL) of Rhizobium sp. and/or 100 g of chemical fertilizer NPK 20-05-20 per planting hole. The experimental design was complete randomized blocks with five replications and eight treatments (n = 800). Plant height, stem diameter and plant survival were measured. The results were tested for normality and homogeneity of variances and analyzed by ANOVA and Tukey test (p < 0.05). Rhizobium sp and AM fungi showed no effect on plant growth. Environmental factors probably influenced the effectiveness of symbiosis of both microorganisms and plant growth. The chemical fertilizer increased S. parahyba growth. During the first 120 days plants suffered with drought and frost, and at 180 days plants inoculated with microorganism plus chemical fertilizer showed higher survival when compared with control. The results showed that the microbial inoculants used showed an important role on plant survival after high stress conditions, but not in plant growth. Also was concluded that the planting time should be between November to December to avoid the presence of young plants during winter time that is dry and cold.
Resumo:
In order to identify alternatives for the use of saline water in agricultural production, the effects of the use of brackish water in the preparation of the nutrient solution for the cultivation of sunflower (cv. EMBRAPA 122-V2000) were studied in hydroponic system on consumption and efficiency of water use for the production of achenes and biomass. A completely randomized design was used, analyzed in a 5x2 factorial scheme with three replications. The factors studied were five levels of salinity of nutrient solution (1.7 - control; 4.3; 6.0; 9.0; and 11.5dS m-1) and two plant densities - one or two plants per vessel. It was concluded that the water consumption of sunflower is a variable sensitive to the salinity of the nutrient solution, especially after the fourth week of crop, and that the efficiency of water use in the production of achenes and biomass of sunflower is greater when the plant density increases from one to two plants per vessel, even under saline stress.
Resumo:
The objective of this study was to evaluate the competitiveness of two cultivars of upland rice drought-tolerant, cultured in coexistence with weed S. verticillata, under conditions of absence and presence of water stress. The experiment was conducted in a greenhouse at the Experimental Station of the Universidade Federal de Tocantins, Gurupi-TO Campus. The experimental design was completely randomized in a factorial 2 x 2 x 4 with four replications. The treatments consisted of two rice cultivars under two water conditions and four densities. At 57 days after emergence, were evaluated in rice cultivars and weed S. verticillata leaf area, dry weight of roots and shoots and total concentration and depth of roots. Was also evaluated in rice cultivars, plant height and number of tillers. Water stress caused a reduction in leaf area, the concentration of roots and vegetative components of dry matter (APDM, and MSR MST) of rice cultivars and Jatoba Catetão and weed S. verticillata. The competition established by the presence of the weed provided reduction of all vegetative components (MSPA, and MSR MST) of cultivars and Jatoba Catetão. It also decreased the number of tillers, the concentration of roots and leaf area. At the highest level of weed competition with rice cultivars, a greater decrease in vegetative components and leaf area of culture, regardless of water conditions.
Resumo:
Due to the increase of water deficiency in many farm regions and its meaning on weed interference, competitive interactions between soybean and three weeds were evaluated under water stress (20 to 40 days after transplanting) and no stress conditions. Three independent experiments were carried out in a growth chamber, being each one composed by the weeds Alternanthera tenella, Tridax procumbens or Digitaria ciliaris, along with the crop, in which soil water condition and plant composition effects were evaluated while in competition. A replacement series system was used, including both monoculture of each species and a mixture with a ratio of 50% between weed and soybean. A completely randomized design was used in factorial arrangement, with treatments distributed in three levels for plant composition factor (soybean and weeds monocultures, in addition to the soybean + weed mixture) and two levels for the water factor (with or without stress), amounting six treatments in each experiment. Soybean dry mass was higher than weed dry mass, when growing without water stress. However, under water stress conditions, the dry mass of soy was reduced in all experiments, mainly in the D. ciliaris comparative experiment. Water restriction was also significant in the plants' photosynthesis reduction in most of the experiments, reducing leaf area duration and efficiency of water use. Analysing all variables shows greater weed tolerance than soybean when submitted to water deficit and with distinct changes of their interactions and mechanism of competition, in each experiment.
Resumo:
The volatile oils extracted from the roots of Polygala extraaxillaris were analyzed to assess whether they increase oxidative stress in Brachiaria decumbens var. Piatã, as well as to assess their effect on cellular division and cytotoxicity in laboratory. Six concentrations were used (0%, 0.35%, 0.65%, 1.25%, 0.65%, and 5.0%) with four repetitions of 25 seeds. The substance 1-(2-hydroxyphenyl) - ethanone was identified as the major constituent of the volatile oils. The results showed that the highest concentrations of the oils resulted in an increase in the oxidative stress in B. decumbens, as well as alteration in germination and growth, with a consequent reduction in the process of cellular division, causing changes in the growth standard and antioxidant defense.
Resumo:
Experiments were conducted in 2010 to determine the influence of plant density and seed position on the mother plant on seed physiological characteristics of cocklebur (Xanthium strumarium). Cocklebur burs were collected in fall of 2010 from Research Farm of University of Agricultural Sciences and Natural Resources of Gorgan, Iran. The experiment was established as factorial arrangement using a completely randomized design with three replications. The factors included different densities of cocklebur (0, 2, 4, 6 and 8 plant m-2) and the top and bottom parts of the canopy. Non dormant seeds were used for determining cardinal temperatures and tolerance to salinity and drought stresses. Base, optimum and ceiling germination temperatures were estimated between 7.09 to 12.33, 32 to 35 and 44 to 45 respectively in different treatments. Salinity stress up to 300 Mm and osmotic potential 8 bar inhibited the germination completely. Comparison of base temperatures and sigmoid equation coefficients showed that seeds produced in the top had higher germination than those that produced at the bottom of the mother plant. It seems plant densities through seed position on the mother plant affect seed quality. Likewise changes of light quality and quantity in shade environment increased seed dormancy in matured seeds. Shade environment affect seed germination on mother plant that increased dormancy of seeds maturing under shade be an adaptive response that reduces the probability of germination of offspring under unfavorable (shade, competitive) conditions.