3 resultados para pigweed redroot
em Scielo Saúde Pública - SP
Resumo:
The aim of this study was to determine the economic damage threshold of Pigweed redroot for corn regarding its density. An experiment was conducted at the Agriculture Research station of Islamic Azad University branch of Gonabad during 2006. The experiment was carried out as a factorial in a randomized complete block design with three replications. In the experiments, the factors included corn (var. 704) densities of 7.5, 8.5 and 9.5 plants m-2 and pigweed redroot densities of 0, 2, 4, 6 and 8 plants m-2. The increase in Pigweed redroot density, decrease in crop grain and biomass yield components such as ear length, ear diameter, number of grains per row, row number, grain number in ear, grain yield and biological yield of corn, decreased. Also, with an increase in corn density, the number of grain per rows, row number, grain yield and biological yield of corn increased. The economic thresholds density of Pigweed redroot was 0.09 to 0.13 plants m-2 in corn different densities, and increased with corn density increases.
Resumo:
Hybrids of Sorghum sudanensis (sudangrass) and Sorghum bicolor genotypes can produce high amounts of biomass, sorgoleone (a long chain hydroquinone), and other phytotoxic substances. Shoots and roots of a sorghum-sudangrass hybrid (cv. Trudan 8) were collected 10, 20, 30, 40, and 50 days after emergence. Four concentrations of aqueous extracts from the shoots and roots (0, 0.4, 2, and 10 g L-1, w/v) were used to treat seeds of lettuce (Lactuca sativa), tomato (Lycopersicum sculentum), purslane (Portulaca oleracea), and pigweed (Amaranthus retroflexus). Seed germination of lettuce, tomato, and pigweed was inhibited by extracts from sorghum-sudangrass shoots at 10 g L-1 when made from sorghum-sudangrass plants 20 days or less in age. Seed germination of purslane was not inhibited by any sorghum-sudangrass extract. Growth of the four species evaluated were systematically inhibited when treated with 10 g L-1 extracts from sorghum-sudangrass shoots harvested up to 10 days after emergence.
Resumo:
Greenhouse studies were conducted in 2008-2009 with the objective of adjusting dose-response curves of the main soil-applied herbicides currently used in cotton for the control of Amaranthus viridis, A. hybridus, A. spinosus, A. lividus, as well as comparing susceptibility among different species, using the identity test models. Thirty six individual experiments were simultaneously carried out in greenhouse, in a sandy clay loam soil (21% clay, 2.36% OM) combining increasing doses of the herbicides alachlor, clomazone, diuron, oxyfluorfen, pendimethalin, prometryn, S-metolachlor, and trifluralin applied to each species. Dose-response curves were adjusted for visual weed control at 28 days after herbicide application and doses required for 80% (C80) and 95% (C95) control were calculated. All herbicides, except clomazone and trifluralin, provided efficient control of most Amaranthus species, but substantial differences in susceptibility to herbicides were found. In general, A. lividus was the least sensitive species, whereas A. spinosus demonstrated the highest sensitivity to herbicides. Alachlor, diuron, oxyfluorfen, pendimethalin, S-metolachlor, and prometryn are efficient alternatives to control Amaranthus spp. in a range of doses that are currently lower than those recommended to cotton.