4 resultados para piezoelectricity,energy harvesting,SSHI,micropower,power conversion
em Scielo Saúde Pública - SP
Resumo:
The rural electrification is characterized by geographical dispersion of the population, low consumption, high investment by consumers and high cost. Moreover, solar radiation constitutes an inexhaustible source of energy and in its conversion into electricity photovoltaic panels are used. In this study, equations were adjusted to field conditions presented by the manufacturer for current and power of small photovoltaic systems. The mathematical analysis was performed on the photovoltaic rural system I-100 from ISOFOTON, with power 300 Wp, located at the Experimental Farm Lageado of FCA/UNESP. For the development of such equations, the circuitry of photovoltaic cells has been studied to apply iterative numerical methods for the determination of electrical parameters and possible errors in the appropriate equations in the literature to reality. Therefore, a simulation of a photovoltaic panel was proposed through mathematical equations that were adjusted according to the data of local radiation. The results have presented equations that provide real answers to the user and may assist in the design of these systems, once calculated that the maximum power limit ensures a supply of energy generated. This real sizing helps establishing the possible applications of solar energy to the rural producer and informing the real possibilities of generating electricity from the sun.
Resumo:
Charcoal is an important energy raw material and its properties are influenced by the wood's anatomical and chemical composition and the production process. The aim of this study was to evaluate the anatomical characteristics, calorific power and volatiles and ash content of carbonized wood from Byrsonima spicata, Calophyllum brasiliense, Cecropia sciadophylla, Cochlospermum orinocense and Schefflera morototoni. The calorific power varied from 26,878 to 31,117 kJ kg-1; the content of volatile materials ranged from 20.9 to 31.7%; ash content ranged from 0.1 to 3.8%; and carbon content varied from 68.2 to 75.3%. Anatomical structures of charcoal can be used for species identification. The studied species are not indicated for charcoal production because the levels of ash and volatile compounds are higher than those recommended for charcoal produced for household use. In addition, the calorific power and level of carbon content are insufficient for use in the steel industry.
Resumo:
As a rule, soils of the subtropical and tropical regions, in which rainfall is not limiting, are acidic, and low in phosphorus, and, to a less extent, in other macro and micronutrients as well, such a sulfur, boron and zinc. The establishment of a permanent agricultural prac. tice therefore, demands relatively high usage of liming and phosphatic fertilization, to begin with. Several approaches, not mutually exclusive, could be used in order to increase the efficiency of utilization of soil and fertilizer phosphorus so that, goal of diminishing costs of production is reached. The use of liming materials bringing up pH to 6.0-6.5 causes the conversion of iron and aluminum phosphates to more available calcium phosphates; on the other hand, by raising calcium saturation in the exchange complex, it improves the development and operation if the root system which allows c or a higher utilization of all soil nutrients, including phosphorus, and helps of stand water deficits which may occur. The role of mycorrhizal fungi should be considered as a way of increasing soil and fertilizer P utilization, as well as the limitations thereof. Screening of and breeding for varieties with higher efficiency of uptake and utilization of soil and fertilizer phosphorus leads to a reduction in cost of inputs and to higher benefit/cost ratios. Corrective fertilization using ground rock phosphate helps to saturate the fixation power of the soil thereby reducing, as a consequence, the need for phosphorus in the maintenance fertilization. Maintenance fertilization, in which soluble phos-phatic sources are used, could be improved by several means whose performance has been proved: limimg, granula tion, placement, use of magnesium salts. Last, cost of phosphate fertilization could be further reduced, without impairing yields, through impairing yields, through changes in technology designed to obtain products better adapted to local conditions and to the availability or raw materials and energy sources.
Resumo:
ABSTRACT We propose a model to explain how contract terms are selected in the presence of a form of economic power: contract power. The orange juice sector is used to illustrate an analysis that demonstrates the effects of contract power on the economic organization of the sector. We define contract power as the ability to exploit contractual gaps or failures of contractual provisions, which are strategically left incomplete. Empirical evidence from content analysis of antitrust documents supports the logic of contract power in the orange juice sector in three forms: avoiding changes to payment methods from weight to solid contents (quality); using information asymmetries to manipulate indexes that calculate the formula of orange prices; and deliberately harvesting oranges late in order to dehydrate the fruit, which consequently reduces weight and price. The paper contributes to understanding the selection of contract terms and the debate about how antitrust offices can deal with this issue.