125 resultados para phospholipase-D activity
em Scielo Saúde Pública - SP
Resumo:
The effects of methylmercury (MeHg) on histochemical demonstration of the NADPH-diaphorase (NADPH-d) activity in the striate cortex were studied in 4 adult cats. Two animals were used as control. The contaminated animals received 50 ml milk containing 0.42 µg MeHg and 100 g fish containing 0.03 µg MeHg daily for 2 months. The level of MeHg in area 17 of intoxicated animals was 3.2 µg/g wet weight brain tissue. Two cats were perfused 24 h after the last dose (group 1) and the other animals were perfused 6 months later (group 2). After microtomy, sections were processed for NADPHd histochemistry procedures using the malic enzyme method. Dendritic branch counts were performed from camera lucida drawings for control and intoxicated animals (N = 80). Average, standard deviation and Student t-test were calculated for each data group. The concentrations of mercury (Hg) in milk, fish and brain tissue were measured by acid digestion of samples, followed by reduction of total Hg in the digested sample to metallic Hg using stannous chloride followed by atomic fluorescence analysis. Only group 2 revealed a reduction of the neuropil enzyme activity and morphometric analysis showed a reduction in dendritic field area and in the number of distal dendrite branches of the NADPHd neurons in the white matter (P<0.05). These results suggest that NADPHd neurons in the white matter are more vulnerable to the long-term effects of MeHg than NADPHd neurons in the gray matter.
Resumo:
Coral snakes, the New World Elapidae, are included in the genera Micniroides and Micrurus. The genus Mlcrurus comprises nearly all coral snake species and those which are responsible for human snake-bite accidents. The following generalizations concerning the effects induced by their venoms, and their venom-properties can be made. Coral snake venoms are neurotoxic, producing loss of muscle strenght and death by respiratory paralysis. Local edema and necrosis are not induced nor blood coagulation or hemorrhages. Proteolysis activity is absent or of very low grade. They display phospholipase A2 activity. Nephrotoxic effects are not evoked. The main toxins from elapid venoms are postsynaptic and presynaptic neurotoxins and cardiotoxins. Phospholipases A2 endowed with myonecrotic or cardiotoxin-like properties are important toxic components from some elapid venoms. The mode of action of Micrurus frontalis, M. lemniscatus, M. corallinus and M. fulvius venoms has been investigated in isolated muscle preparations and is here discussed. It is shown that while M. frontalis and M. lemniscatus venoms must contain only neurotoxins that act at the cholinergic end-plate receptor (postsynaptic neurotoxins), M. corallinus venom also inhibits evoked acetylcholine release by the motor nerve endings (presynaptic neurotoxin-like effect) and M. fulvius induces muscle fiber membrane depolarization (cardiotoxin-like effect). The effects produced by M. corallinus and M. fulvius venoms in vivo in dogs and M. frontalis venom in dogs and monkeys are also reported.
Resumo:
The localization of the xanthine oxidase (X.O.) and xanthine dehydrogenase (X.D.) activities in rat liver have been studied using separation of cytoplasmic particles into fractions by differential centrifugation. The results clearly demonstrate that practically all the enzymic activity is present in the supernatant fluid corresponding to the cell sap containing the soluble proteins of the cell. No activity could be detected for the nuclear, mitocondrial and microsomal fractions. The enzymatic activity of the mixture of the four factions was 102 per cent of that of the original homogenate. The distribution of the xanthine dehydrogenase in the protein fractions of the rat serum was accomplished in preliminary experiments by means of 50% ammonium sulphate precipitation and subsequent dialysis against water. All enzymatic activity was confined to the globulin fractions of the serum. Paper electrophoresis was performed and the protein and lipoprotein fractions determined. A method for the localization of the X.D. activity in the protein fractions separated by paper electrophoresis was developed. The results obtained suggest that xanthine dehydrogenase is localized in the globulin fractions possessing mobilities of [alpha 1], [beta] and [gamma] globulins and are probably bound to the lipoproteins.
Resumo:
We describe the isolation of crotoxin, a presynaptic B-neurotoxin, as well as its subunits B (crotactine) and A (crotapotin) from lyophilized Crotalus durissus terrificus venom by a single-step preparative isoelectric focusing procedure. From 98 mg of dried venom protein 20.1 mg of crotactine and 13.1 mg of crotapotin were recovered in the first step of focalization and 4.2 mg in a second run. These values correspond to 35.7% of the total venom protein applied. Crotactine separated in the 9.3-7.0 pH range (tubes 1-6) and crotapotin in the 1.8-2.8 pH range (tubes 15-19) and both were homogeneous by SDS-PAGE and N-terminal amino acid analysis. Crotactine, a 12-kDa protein, presented hemolytic and phospholipase A2 activity. Thus, using isoelectric focusing we simultaneously purified both toxins in high yields. This method can be used as an alternative for the purification and characterization of proteins from other snake venoms under conditions in which biological activity is retained
Resumo:
The purpose of the present study was to investigate the in vitro and in vivo effects of aluminum sulfate on delta-aminolevulinic acid dehydratase (ALA-D) activity from the brain, liver and kidney of adult mice (Swiss albine). In vitro experiments showed that the aluminum sulfate concentration needed to inhibit the enzyme activity was 1.0-5.0 mM (N = 3) in brain, 4.0-5.0 mM (N = 3) in liver and 0.0-5.0 mM (N = 3) in kidney. The in vivo experiments were performed on three groups for one month: 1) control animals (N = 8); 2) animals treated with 1 g% (34 mM) sodium citrate (N = 8) and 3) animals treated with 1 g% (34 mM) sodium citrate plus 3.3 g% (49.5 mM) aluminum sulfate (N = 8). Exposure to aluminum sulfate in drinking water inhibited ALA-D activity in kidney (23.3 ± 3.7%, mean ± SEM, P<0.05 compared to control), but enhanced it in liver (31.2 ± 15.0%, mean ± SEM, P<0.05). The concentrations of aluminum in the brain, liver and kidney of adult mice were determined by graphite furnace atomic absorption spectrometry. The aluminum concentrations increased significantly in the liver (527 ± 3.9%, mean ± SEM, P<0.05) and kidney (283 ± 1.7%, mean ± SEM, P<0.05) but did not change in the brain of aluminum-exposed mice. One of the most important and striking observations was the increase in hepatic aluminum concentration in the mice treated only with 1 g% sodium citrate (34 mM) (217 ± 1.5%, mean ± SEM, P<0.05 compared to control). These results show that aluminum interferes with delta-aminolevulinate dehydratase activity in vitro and in vivo. The accumulation of this element was in the order: liver > kidney > brain. Furthermore, aluminum had only inhibitory properties in vitro, while in vivo it inhibited or stimulated the enzyme depending on the organ studied.
Resumo:
Lead has been shown to produce cognitive and motor deficits in young rats that could be mediated, at least in part, by inhibition of the zinc-containing heme biosynthetic enzyme delta-aminolevulinate dehydratase (ALA-D). In the present study we investigated the effects of lead and/or zinc treatment during the second stage of rapid postnatal brain development on brain, kidney and blood ALA-D specific activity, as well as the negative geotaxis behavior of rats. Eight-day-old Wistar rats were injected intraperitoneally with saline, lead acetate (8 mg/kg) and/or zinc chloride (2 mg/kg) daily for five consecutive days. Twenty-four hours after treatment, ALA-D activity was determined in the absence and presence of DL-dithiothreitol (DTT). The negative geotaxis behavior was assessed in 9- to 13-day-old rats. Treatment with lead and/or zinc did not affect body, brain or kidney weights or brain- or kidney-to-body weight ratios of the animals. In spite of the absence of effect of any treatment on ALA-D specific activity in brain, kidney and blood, the reactivation index with DTT was higher in the groups treated with lead or lead + zinc than in the control group, in brain, kidney and blood (mean ± SEM; brain: 33.33 ± 4.34, 38.90 ± 8.24, 13.67 ± 3.41; kidney: 33.50 ± 2.97, 37.60 ± 2.67, 15.80 ± 2.66; blood: 63.95 ± 3.73, 56.43 ± 5.93, 31.07 ± 4.61, respectively, N = 9-11). The negative geotaxis response behavior was not affected by lead and/or zinc treatment. The results indicate that lead and/or zinc treatment during the second stage of rapid postnatal brain growth affected ALA-D, but zinc was not sufficient to protect the enzyme from the effects of lead in brain, kidney and blood.
Resumo:
Fusarium species have emerged as one of the more outstanding groups of clinically important filamentous fungi, causing localized and life-threatening invasive infections with high morbidity and mortality. The ability to produce different types of hydrolytic enzymes is thought to be an important virulence mechanism of fungal pathogens and could be associated with the environment of the microorganism. Here, we have measured the production of two distinct lipolytic enzymes, phospholipase and esterase, by sixteen Fusarium isolates recovered from the hospital environment, immunocompromised patients’ blood cultures, foot interdigital space scrapings from immunocompromised patients, and foot interdigital space scrapings from immunocompetent patients (4 isolates each). Fourteen of these 16 isolates were identified asFusarium solani species complex (FSSC) and two were identified as F. oxysporum species complex (FOSC). Some relevant genus characteristics were visualized by light and electron microscopy such as curved and multicelled macroconidia with 3 or 4 septa, microconidia, phialides, and abundant chlamydospores. All Fusarium isolates were able to produce esterase and phospholipase under the experimental conditions. However, a negative correlation was observed between these two enzymes, indicating that a Fusarium isolate with high phospholipase activity has low esterase activity and vice versa. In addition, Fusarium isolated from clinical material produced more phospholipases, while environmental strains produced more esterases. These observations may be correlated with the different types of substrates that these fungi need to degrade during their nutrition processes.
Resumo:
INTRODUCTION: The phospholipase activity in Candida albicans and Candida dubliniensis isolated from oral candidiasis cases were studied. METHODS: The phospholipase activity was evaluated in egg yolk agar. RESULTS: All the C. albicans isolates (n = 48) showed phospholipase activity (mean Pz = 0.66). However, none of the C. dubliniensis isolates (n = 24) showed this activity. CONCLUSIONS: The authors discuss whether these findings are a true characteristic of C. dubliniensis or a consequence of the methodology employed, which includes the possibility that NaCl may have inhibited the enzymatic activity of C. dubliniensis.
Resumo:
INTRODUCTION: Candida yeasts are commensals; however, if the balance of normal flora is disrupted or the immune defenses are compromised, Candida species can cause disease manifestations. Several attributes contribute to the virulence and pathogenicity of Candida, including the production of extracellular hydrolytic enzymes, particularly phospholipase and proteinase. This study aimed to investigate the in vitro activity of phospholipases and acid proteinases in clinical isolates of Candida spp. METHODS: Eighty-two isolates from hospitalized patients collected from various sites of origin were analyzed. Phospholipase production was performed in egg yolk medium and the production of proteinase was verified in a medium containing bovine serum albumin. The study was performed in triplicate. RESULTS: Fifty-six (68.3%) of isolates tested were phospholipase positive and 16 (44.4%) were positive for proteinase activity. C. tropicalis was the species with the highest number of positive isolates for phospholipase (91.7%). Statistically significant differences were observed in relation to production of phospholipases among species (p<0,0001) and among the strains from different sites of origin (p=0.014). Regarding the production of acid protease, the isolates of C. parapsilosis tested presented a larger number of producers (69.2%). Among the species analyzed, the percentage of protease producing isolates did not differ statistically (χ2=1.9 p=0.5901 (χ2=1.9 p=0.5901). CONCLUSIONS: The majority of C. non-albicans and all C. albicans isolates were great producers of hydrolytic enzymes and, consequently, might be able to cause infection under favorable conditions.
Resumo:
Ethanolic crude extracts from the roots of Chaptalia nutans, traditionally used in Brazilian folk medicine, were screened against Staphylococcus aureus, Escherichia coli, and Pseudomonas aeruginosa by using the disk diffusion test technique. S. aureus with 14 mm inhibition zone was considered susceptible. E. coli and P. aeruginosa without such a zone were considered resistant. As a result of this finding, the ethanolic crude extract was fractionated on silica gel column chromatography into five fractions. The ethyl acetate fraction was active against S. aureus and Bacillus subtilis. Further column chromatography separation of the ethyl acetate fraction afforded 30 fractions, which were assayed against S. aureus. Fractions 16 and 17 showed inhibition zones with S. aureus, indicating the presence of active compounds, and were subjected to purification by repeated preparative thin layer chromatography. The pure compound 7-O-beta-D-glucopyranosyl-nutanocoumarin inhibited B. subtilis and S. aureus at concentrations of 62.5 µg/ml and 125 µg/ml, respectively. The antibacterial property of C. nutans appears to have justified its use for the treatment of wounds, which are contaminated through bacterial infections.
Resumo:
The main objective of this research is to evaluate the molluscicide activity of Physalis angulata L. Biomphalaria tenagophila specimens under laboratory conditions. Extracts and fractions were supplied by the Laboratório de Química de Produtos Naturais, Farmanguinhos-Fiocruz. Experiments were performed according to the methodology described by the World Health Organization for molluscicide tests using the concentrations from 0.1 to 500 mg/l of the extracts, fractions and of a pool of physalins modified steroids present in this species. The results show that ethyl acetate and acetone extracts from the whole plant, the ethanolic extracts of the roots and the physalins pool from stems and leaves were active. Only the whole plant extracts were available in sufficient quantity for the determination of LD50 and LD90 values.
Resumo:
The phytochemical investigation of Bakeridesia pickelii Monteiro led to the isolation of seven compounds: beta-sitosterol, a mixture of sitosteryl-3-O-beta-D-glucopyranoside and stigmasteryl-3-O-beta-D-glucopyranoside, vanillic acid, p-coumaric acid, quercetin 3-O-beta-D-glucopyranoside (isoquercitrin) and kaempferol-3-O-beta-D-(6"-E-p -coumaroyl) glucopyranoside (tiliroside), which was isolated as the major component. Their structures were elucidated on the basis of spectroscopic data such as IR, ¹H and 13C NMR, including two-dimensional techniques. Tiliroside relaxed the guinea-pig ileum pre-contracted with KCl 40 mM (EC50 = 9.5 ± 1.0 x 10-5 M), acetylcholine 10-6 M (EC50 = 2.3 ± 0.9 x 10-5 M) or histamine 10-6 M (EC50 = 4.1 ± 1.0 x 10-5 M) in a concentration-dependent manner.
Resumo:
Volatile oils from the leaves of Verbenaceae species Aloysia virgata, Lantana camara, Lantana trifolia, Lantana montevidensis, Lippia brasiliensis and Lippia sericea were investigated for its chemical composition and antibacterial activity. The volatile oils were characterized by a high content of sesquiterpenes of which (E)-caryophyllene (10-35%), germacrene-D (5-46%) and bicyclogermacrene (7-17%) were the major components for all studied species. For the flowers, a higher concentration of monoterpenes was observed for the species L. camara, L. trifolia and L. brasiliensis. These compounds probably act as attractive to specific pollinators. The volatile oils from A. virgata was the most active, exhibiting moderate antimicrobial activity against the bacteria Staphylococcus aureus, Bacillus cereus and Escherichia coli.
Resumo:
MeOH extract from the leaves of Plectranthus barbatus Andrews (Lamiaceae), showed in vitro anti-trypanosomal activity. The bioassay-guided fractionation resulted in the isolation of a gallic acid derivative, identified as 1,2,3,4,6-penta-O-galloyl-β-D-glucose (PGG), after thorough NMR and MS spectral analysis. Finally, this compound was tested against trypomastigote forms of T. cruzi and displayed an EC50 value of 67 µM, at least 6.6-fold more effective than the standard drug benznidazole. This is the first occurrence of PGG in the Plectranthus genus and the first anti-parasitic activity described for PGG in the literature.
Resumo:
A series of six new palmitic acid-based neoglycolipids related to Papulacandin D were synthesized in five steps, resulting in good yields, and they were evaluated against Candida spp. All twelve synthetic intermediates were also evaluated. The synthesis involved the initial glycosylation of two phenols (4-hydroxy-3-methoxybenzaldehyde and 3-hydroxybenzaldehyde) via their reaction with peracetylated glucosyl bromide. This was followed by deacetylation with potassium methoxide/metanol solution and the protection of two hydroxyls (C4 and C6 positions) of the saccharide unit as benzilidene acetals (10-11). The next step involved the acylation of the acetal derivatives with palmitic acid, thereby affording a mixture of two isomers mono-acylated at the C2 and C3 positions and a di-acylated product (12-17). After being isolated, each compound was subjected to the removal of the acetal protecting group to yield the papulacandin D analogues 18-23. Three compounds showed low antifungal activity against two species: C. albicans (compounds 7 and 23) and C. tropicalis (compound 17) at 200 µg mL−1.