3 resultados para pharmacophore
em Scielo Saúde Pública - SP
Resumo:
Reverse transcriptase (RT) is a multifunctional enzyme in the human immunodeficiency virus (HIV)-1 life cycle and represents a primary target for drug discovery efforts against HIV-1 infection. Two classes of RT inhibitors, the nucleoside RT inhibitors (NRTIs) and the nonnucleoside transcriptase inhibitors are prominently used in the highly active antiretroviral therapy in combination with other anti-HIV drugs. However, the rapid emergence of drug-resistant viral strains has limited the successful rate of the anti-HIV agents. Computational methods are a significant part of the drug design process and indispensable to study drug resistance. In this review, recent advances in computer-aided drug design for the rational design of new compounds against HIV-1 RT using methods such as molecular docking, molecular dynamics, free energy calculations, quantitative structure-activity relationships, pharmacophore modelling and absorption, distribution, metabolism, excretion and toxicity prediction are discussed. Successful applications of these methodologies are also highlighted.
Resumo:
In this article are described new bioactive N-acylhydrazone (NAH) derivatives, structurally designed as optimization of aryl hydrazones precursors planned by molecular hybridization of two 5-lipoxigenase inhibitors, e.g. CBS-1108 and BW-755c. The analgesic, antiedematogenic and anti-platelet aggregating profile of several isosteric compounds was investigated by using classic pharmacological assays in vivo and ex-vivo, allowing to identify new potent peripheric analgesic lead, a new anti-inflammatory and an antithrombotic agent. During this study was discovered dozen of active NAH compounds clarifying the structure-activity relationship for this series of NAH derivatives, indicating the pharmacophore character of the N-acylhydrazone functionality.
Resumo:
Quinine and quinidine are well-known 4-quinolinecarbinolamines that exhibit antimalarial activity, but, in contrast, their epimers 9-epiquinine and 9-epiquinidine are almost inactive. Literature data are conflicting in describing the 4-quinolinecarbinolamine interaction mode with the molecular target, the ferriprotoporphyrin IX [Fe(III)PPIX]. In the present paper, a pharmacophore is proposed based on the binding of the non-aromatic nitrogen to the iron atom. The 4-quinolinecarbinolamine antimalarials were superimposed on the pharmacophore under consideration and complexes with Fe(III)PPIX were constructed. Conformational analyses of the complexes were performed applying the MM+ molecular mechanics method. The analysis of the complexes showed that the proposed ligand mode is possible although it does not explain the activity differences between epimers. A discussion of the structural aspects is also provided.