2 resultados para p65
em Scielo Saúde Pública - SP
Resumo:
Recent evidence indicates that a deficiency of 1,25-dihydroxyvitamin D3 (1,25[OH]2D3) may influence asthma pathogenesis; however, its roles in regulating specific molecular transcription mechanisms remain unclear. We aimed to investigate the effect of 1,25(OH)2D3 on the expression and enzyme activity of histone deacetylase 2 (HDAC2) and its synergistic effects with dexamethasone (Dx) in the inhibition of inflammatory cytokine secretion in a rat asthma model. Healthy Wistar rats were randomly divided into 6 groups: control, asthma, 1,25(OH)2D3 pretreatment, 1,25(OH)2D3 treatment, Dx treatment, and Dx and 1,25(OH)2D3 treatment. Pulmonary inflammation was induced by ovalbumin (OVA) sensitization and challenge (OVA/OVA). Inflammatory cells and cytokines in the bronchoalveolar lavage (BAL) fluid and histological changes in lung tissue were examined. Nuclear factor kappa B (NF-κB) p65 and HDAC2 expression levels were assessed with Western blot analyses and quantitative reverse-transcriptase polymerase chain reaction (qRT-PCR). Enzyme activity measurements and immunohistochemical detection of HDAC2 were also performed. Our data demonstrated that 1,25(OH)2D3 reduced the airway inflammatory response and the level of inflammatory cytokines in BAL. Although NF-κB p65 expression was attenuated in the pretreatment and treatment groups, the expression and enzyme activity of HDAC2 were increased. In addition, 1,25(OH)2D3 and Dx had synergistic effects on the suppression of total cell infusion, cytokine release, and NF-κB p65 expression, and they also increased HDAC2 expression and activity in OVA/OVA rats. Collectively, our results indicated that 1,25(OH)2D3might be useful as a novel HDAC2 activator in the treatment of asthma.
Resumo:
The levels of serum inflammatory cytokines and the activation of nuclear factor kappa B (NF-κB) and hypoxia inducible factor-1α (HIF-1α) in heart tissues in response to different frequencies of intermittent hypoxia (IH) and the antioxidant tempol were evaluated. Wistar rats (64 males, 200-220 g) were randomly divided into 6 experimental groups and 2 control groups. Four groups were exposed to IH 10, 20, 30, or 40 times/h. The other 2 experimental groups were challenged with IH (30 times/h) plus tempol, either beginning on day 0 (IH30T0) or on day 29 (IH30T29). After 6 weeks of challenge, serum levels of tumor necrosis factor (TNF)-α, intracellular adhesion molecule (ICAM)-1, and interleukin-10 were measured, and western blot analysis was used to detect NF-κB p65 and HIF-1α in myocardial tissues. Serum levels of TNF-α and ICAM-1 and myocardial expression of NF-κB p65 and HIF-1α were all significantly higher in IH rats than in controls (P<0.001). Increased IH frequency resulted in more significant changes. Administration of tempol in IH rats significantly reduced levels of TNF-α, ICAM-1, NF-κB and HIF-1α compared with the non-tempol-treated group (F=16.936, P<0.001). IH induced an inflammatory response in a frequency-dependent manner. Additionally, HIF-1α and NF-κB were increased following IH administration. Importantly, tempol treatment attenuated this effect.