164 resultados para nitrogen leaching
em Scielo Saúde Pública - SP
Resumo:
Fruit tree production is gaining an increasing importance in the central Amazon and elsewhere in the humid tropics, but very little is known about the nutrient dynamics in the soil-plant system. The present study quantified the effects of fertilization and cover cropping with a legume (Pueraria phaseoloides (Roxb.) Benth.) on soil nitrogen (N) dynamics and plant nutrition in a young guarana plantation (Paullinia cupana Kunth. (H.B. and K.) var. sorbilis (Mart.) Ducke) on a highly weathered Xanthic Ferralsol. Large subsoil nitrate (NO3-) accumulation at 0.3-3 m below the guarana plantation indicated N leaching from the topsoil. The NO3- contents to a depth of 2 m were 2.4 times greater between the trees than underneath unfertilized trees (P<0.05). The legume cover crop between the trees increased soil N availability as shown by elevated aerobic N mineralization and lower N immobilization in microbial biomass. The guarana N nutrition and yield did not benefit from the N input by biological fixation of atmospheric N2 by the legume cover (P>0.05). Even without a legume intercrop, large amounts of NO3- were found in the subsoil between unfertilized trees. Subsoil NO3- between the trees could be utilized, however, by fertilized guarana. This can be explained by a more vigorous growth of fertilized trees which had a larger nutrient demand and exploited a larger soil volume. With a legume cover crop, however, more mineral N was available at the topsoil which was leached into the subsoil and consequently accumulated at 0.3-3 m depth. Fertilizer additions of P and K were needed to increase subsoil NO3- use between trees.
Resumo:
High N concentrations in biosolids are one of the strongest reasons for their agricultural use. However, it is essential to understand the fate of N in soils treated with biosolids for both plant nutrition and managing the environmental risk of NO3--N leaching. This work aimed at evaluating the risk of NO3--N leaching from a Spodosol and an Oxisol, each one treated with 0.5-8.0 dry Mg ha-1 of fresh tertiary sewage sludge, composted biosolids, limed biosolids, heat-dried biosolids and solar-irradiated biosolids. Results indicated that under similar application rates NO3--N accumulated up to three times more in the 20 cm topsoil of the Oxisol than the Spodosol. However, a higher water content held at field capacity in the Oxisol compensated for the greater nitrate concentrations. A 20 % NO3--N loss from the root zone in the amended Oxisol could be expected. Depending on the biosolids type, 42 to 76 % of the NO3--N accumulated in the Spodosol could be expected to leach down from the amended 20 cm topsoil. NO3--N expected to leach from the Spodosol ranged from 0.8 (composted sludge) to 3.5 times (limed sludge) the amounts leaching from the Oxisol treated alike. Nevertheless, the risk of NO3--N groundwater contamination as a result of a single biosolids land application at 0.5-8.0 dry Mg ha-1 could be considered low.
Resumo:
Nitrogen has a complex dynamics in the soil-plant-atmosphere system. N fertilizers are subject to chemical and microbial transformations in soils that can result in significant losses. Considering the cost of fertilizers, the adoption of good management practices like fertigation could improve the N use efficiency by crops. Water balances (WB) were applied to evaluate fertilizer N leaching using 15N labeled urea in west Bahia, Brazil. Three scenarios (2008/2009) were established: i) rainfall + irrigation the full year, ii) rainfall only; and iii) rainfall + irrigation only in the dry season. The water excess was considered equal to the deep drainage for the very flat area (runoff = 0) with a water table located several meters below soil surface (capillary rise = 0). The control volume for water balance calculations was the 0 - 1 m soil layer, considering that it involves the active root system. The water drained below 1 m was used to estimate fertilizer N leaching losses. WB calculations used the mathematic model of Penman-Monteith for evapotranspiration, considering the crop coefficient equal to unity. The high N application rate associated to the high rainfall plus irrigation was found to be the main cause for leaching, which values were 14.7 and 104.5 kg ha-1 for the rates 400 and 800 kg ha-1 of N, corresponding to 3.7 and 13.1 % of the applied fertilizer, respectively.
Resumo:
Nitrogen usually determines the productive potential of forage crops, although it is highly unstable in the environment. Studies on recovery rates and use efficiency are important for more reliable fertilizer recommendations to reduce costs and avoid environmental pollution. The purpose of this study was to evaluate N use efficiency and recovery rate of Alexandergrass pasture (Brachiaria - Syn. Urochloa plantaginea) as well as N-NO3- and N-NH4+ soil concentrations using different levels of N fertilization under two grazing intensities. The experiment was arranged in a randomized block design in a factorial scheme with three replications. Treatments consisted of three N rates (0, 200 and 400 kg ha-1 N) and two grazing intensities termed low mass (LM; forage mass of 2,000 kg ha-1 of DM) and high mass (HM; forage mass of 3,600 kg ha-1 of DM) under continuous stocking and variable stocking rates. Results of N fertilization with 200 kg ha-1 were better than with 400 kg ha-1 N. There was a significant effect of N rates on soil N-NO3-concentration with higher levels in the first layer of the soil profile in the treatment with 400 kg ha-1 N. Grazing intensity also affected soil N-NO3- concentration, by increasing the levels under the higher stocking rate (lower forage mass).
Resumo:
A lysimeter experiment was carried out with sugarcane aiming to evaluate the leaching of nitrogen derived from either urea (15N) or the soil/sugarcane crop residues. The leaching of K+, Ca2+, and Mg2+ was also evaluated. The experiment was a factorial 2x4. The influencing factors were: firstly, the differential addition of two kinds of sugarcane remains to the soil, simulating conditions of cane- plantation renewal after the cane crop harvest, with and without previous straw removal by burning; secondly, four doses of N: 0, 30, 60, and 90 kg ha-1. During the experimental period the total volume of water received by the sugarcane-soil system was 2,015 mm, with 1,255 mm as precipitation and 760 mm as irrigation. The loss of N by leaching from the fertilizer (15N) was not detected. In the first three weeks the largest losses of N by leaching occurred, originating from the soil/sugarcane remains-N. The mean of leached N during the experimental period of 11 months was of 4.5 kg ha-1. The mean losses of K+, Ca2+, and Mg2+ were of 13, 320 and 80 kg ha-1, respectively.
Resumo:
Nitrate losses from soil profiles by leaching should preferentially be monitored during high rainfall events and during irrigation when fertilizer nitrogen applications are elevated. Using a climatologic water balance, based on the models of Thornthwaite and Penman Monteith for potential evapotranspiration, drainage soil water fluxes below the root zone were estimated in a fertigated coffee crop. Soil solution extraction at the depth of 1 m allowed the calculation of nitrate leaching. The average nitrate concentration in soil solution for plots that received nitrogen by fertigation at a rate of 400 kg ha-1, was 5.42 mg L-1, surpassing the limit of the Brazilian legislation of 10.0 mg L-1, only during one month. For plots receiving 800 kg ha-1 of nitrogen, the average was 25.01 mg L-1, 2.5 times higher than the above-mentioned limit. This information indicates that nitrogen rates higher than 400 kg ha-1 are potentially polluting the ground water. Yearly nitrate amounts of leaching were 24.2 and 153.0 kg ha-1 for the nitrogen rates of 400 and 800 kg ha-1, respectively. The six times higher loss indicates a cost/benefit problem for coffee fertigations above 400 kg ha-1.
Resumo:
The timing of N application to maize is a key factor to be considered in no-till oat/maize sequential cropping. This study aimed to evaluate the influence of pre-planting, planting and sidedress N application on oat residue decomposition, on soil N immobilisation and remineralisation and on N uptake by maize plants in no-till oat/maize sequential cropping. Undisturbed soil cores of 10 and 20 cm diameter were collected from the 0-15 cm layer of a no-till Red Latossol, when the oat cover crop was in the milk-grain stage. Two greenhouse experiments were conducted simultaneously. Experiment A, established in the 10 cm diameter cores and without plant cultivation, was used to asses N dynamics in soil and oat residues. Experiment B, established in the 20 cm diameter cores and with maize cultivation, was used to assess plant growth and N uptake. An amount of 6.0 Mg ha-1 dry matter of oat residues was spread on the surface of the cores. A rate of 90 kg N ha-1 applied as ammonium sulphate in both experiments was split in pre-planting, planting and sidedress applications as follows: (a) 00-00-00 (control), (b) 90-00-00 (pre-planting application, 20 days before planting), (c) 00-90-00 (planting application), (d) 00-30-60 (split in a planting and a sidedress application 31 days after emergence), (e) 00-00-00* (control, without oat residue) and (f) 90-00-00* (pre-planting application, without oat residue). The N concentration and N content in oat residues were not affected during decomposition by N fertilisation. Most of the fertiliser NH4+-N was converted into NO3--N within 20 days after application. A significant decrease in NO3--N contents in the 0-4 cm layer was observed in all treatments between 40 and 60 days after the oat residue placement on the soil surface, suggesting the occurrence of N immobilisation in this period. Considering that most of the inorganic N was converted into NO3- and that no immobilisation of the pre planting fertiliser N occurred at the time of its application, it was possible to conclude that pre-planting applied N was prone to losses by leaching. On the other hand, with split N applications, maize plants showed N deficiency symptoms before sidedress application. Two indications for fertiliser-N management in no-till oat/maize sequential cropping could be suggested: (a) in case of split application, the sidedress should be earlier than 30 days after emergence, and (b) if integral application is preferred to save field operations, this should be done at planting.
Resumo:
No-tillage systems, associated to black oat as preceding cover crop, have been increasingly adopted. This has motivated anticipated maize nitrogen fertilization, transferring it from the side-dress system at the stage when plants have five to six expanded leaves to when the preceding cover crop is eliminated or to maize sowing. This study was conducted to evaluate the effects of soil tillage system and timing of N fertilization on maize grain yield and agronomic efficiency of N applied to a soil with high organic matter content. A three-year field experiment was conducted in Lages, state of Santa Catarina, from 1999 onwards. Treatments were set up in a split plot arrangement. Two soil tillage systems were tested in the main plots: conventional tillage (CT) and no-tillage (NT). Six N management systems were assessed in the split-plots: S1 - control, without N application; S2 - all N (100 kg ha-1) applied at oat desiccation; S3 - all N applied at maize sowing; S4 - all N side-dressed when maize had five expanded leaves (V5 growth stage); S5 - 1/3 of N rate applied at maize sowing and 2/3 at V5; S6 - 2/3 of nitrogen rate applied at maize sowing and 1/3 at V5. Maize response to the time and form of splitting N was not affected by the soil tillage system. Grain yield ranged from 6.0 to 11.8 t ha-1. The anticipation of N application (S2 and S3) decreased grain yield in two of three years. In the rainiest early spring season (2000/2001) of the experiment, S4 promoted an yield advantage of 2.2 t ha-1 over S2 and S3. Application of total N rate before or at sowing decreased the number of kernels produced per ear in 2000/2001 and 2001/2002 and the number of ears produced per area in 2001/2002, resulting in reduced grain yield. The agronomic efficiency of applied N (kg grain increase/kg of N applied) ranged from 13.9 to 38.8 and was always higher in the S4 than in the S2 and S3 N systems. Short-term N immobilization did not reduce grain yield when no N was applied before or at maize sowing in a soil with high organic matter content, regardless of the soil tillage system.
Resumo:
Crop species with the C4 photosynthetic pathway are more efficient in assimilating N than C3 plants, which results in different N amounts prone to be washed from its straw by rain water. Such differences may affect N recycling in agricultural systems where these species are grown as cover crops. In this experiment, phytomass production and N leaching from the straw of grasses with different photosynthetic pathways were studied in response to N application. Pearl millet (Pennisetum glaucum) and congo grass (Brachiaria ruziziensis) with the C4 photosynthetic pathway, and black oat (Avena Strigosa) and triticale (X Triticosecale), with the C3 photosynthetic pathway, were grown for 47 days. After determining dry matter yields and N and C contents, a 30 mm rainfall was simulated over 8 t ha-1 of dry matter of each plant residue and the leached amounts of ammonium and nitrate were determined. C4 grasses responded to higher fertilizer rates, whereas N contents in plant tissue were lower. The amount of N leached from C4 grass residues was lower, probably because the C/N ratio is higher and N is more tightly bound to organic compounds. When planning a crop rotation system it is important to take into account the difference in N release of different plant residues which may affect N nutrition of the subsequent crop.
Resumo:
Especially under no-tillage, subsuface soil acidity has been a problem, because it depends on base leaching, which has been associated with the presence of low molecular weigth organic acids and companion anions. The objective of this study was to evaluate exchangeable base cation leaching as affected by surface liming along with annual urea side-dressing of maize and upland rice. Treatments consisted of four lime rates (0, 1500, 3000, and 6000 kg ha-1) combined with four nitrogen rates (0, 50, 100, and 150 kg ha-1) applied to maize (Zea mays) and upland rice (Oryza sativa), in two consecutive years. Maize was planted in December, three months after liming. In September of the following year, pearl millet (Pennisetum glaucum) was planted without fertilization and desiccated 86 days after plant emergence. Afterwards, upland rice was grown. Immediately after upland rice harvest, 18 months after surface liming, pH and N-NO3-, N-NH4+, K, Ca, and Mg levels were evaluated in soil samples taken from the layers 0-5, 5-10, 10-20 and 20-40 cm. Higher maize yields were obtained at higher N rates and 3000 kg ha-1 lime. Better results for upland rice and pearl millet yields were also obtained with this lime rate, irrespective of N levels. The vertical mobility of K, Ca and Mg was higher in the soil profiles with N fertilization. Surface liming increased pH in the upper soil layers causing intense nitrate production, which was leached along with the base cations.
Resumo:
Leaching of nitrate (NO3-) can increase the groundwater concentration of this anion and reduce the agronomical effectiveness of nitrogen fertilizers. The main soil property inversely related to NO3- leaching is the anion exchange capacity (AEC), whose determination is however too time-consuming for being carried out in soil testing laboratories. For this reason, this study evaluated if more easily measurable soil properties could be used to estimate the resistance of subsoils to NO3- leaching. Samples from the subsurface layer (20-40 cm) of 24 representative soils of São Paulo State were characterized for particle-size distribution and for chemical and electrochemical properties. The subsoil content of adsorbed NO3- was calculated from the difference between the NO3- contents extracted with 1 mol L-1 KCl and with water; furthermore, NO3- leaching was studied in miscible displacement experiments. The results of both adsorption and leaching experiments were consistent with the well-known role exerted by AEC on the nitrate behavior in weathered soils. Multiple regression analysis indicated that in subsoils with (i) low values of remaining phosphorus (Prem), (ii) low soil pH values measured in water (pH H2O), and (iii) high pH values measured in 1 moL L-1 KCl (pH KCl), the amounts of surface positive charges tend to be greater. For this reason, NO3- leaching tends to be slower in these subsoils, even under saturated flow condition.
Resumo:
ABSTRACT Viticulture is an activity of great social and economic importance in the lower-middle region of the São Francisco River valley in northeastern Brazil. In this region, the fertility of soils under vineyards is generally poor. To assess the effects of organic and nitrogen fertilization on chemical properties and nitrate concentrations in an Argissolo Vermelho-Amarelo (Typic Plinthustalf), a field experiment was carried out in Petrolina, Pernambuco, on Syrah grapevines. Treatments consisted of two rates of organic fertilizer (0 and 30 m3 ha-1) and five N rates (0, 10, 20, 40, and 80 kg ha-1), in a randomized block design arranged in split plots, with five replications. The organic fertilizer levels represented the main plots and the N levels, the subplots. The source of N was urea and the source of organic fertilizer was goat manure. Irrigation was applied through a drip system and N by fertigation. At the end of the third growing season, soil chemical properties were determined and nitrate concentration in the soil solution (extracted by porous cups) was determined. Organic fertilization increased organic matter, pH, EC, P, K, Ca, Mg, Mn, sum of bases, base saturation, and CEC, but decreased exchangeable Cu concentration in the soil by complexation of Cu in the organic matter. Organic fertilization raised the nitrate concentration in the 0.20-0.40 m soil layer, making it leachable. Nitrate concentration in the soil increased as N rates increased, up to more than 300 mg kg-1 in soil and nearly 800 mg L-1 in the soil solution, becoming prone to leaching losses.
Sweet orange trees grafted on selected rootstocks fertilized with nitrogen, phosphorus and potassium
Resumo:
The majority of citrus trees in Brazil are grafted on 'Rangpur lime' (Citrus limonia Osb.) rootstock. Despite its good horticultural performance, search for disease tolerant rootstock varieties to improve yield and longevity of citrus groves has increased. The objective of this work was to evaluate yield efficiency of sweet oranges on different rootstocks fertilized with N, P, and potassium. Tree growth was affected by rootstock varieties; trees on 'Swingle' citrumelo [Poncirus trifoliata (L.) Raf. × C. paradisi Macf.] presented the smallest canopy (13.3 m³ in the fifth year after tree planting) compared to those on 'Rangpur lime' and 'Cleopatra' mandarin [C. reshni (Hayata) hort. ex Tanaka] grown on the same grove. Although it was observed an overall positive relationship between canopy volume and fruit yield (R² = 0.95**), yield efficiency (kg m-3) was affected by rootstocks, which demonstrated 'Rangpur lime' superiority in relation to Cleopatra. Growth of citrus trees younger than 5-yr-old might be improved by K fertilization rates greater than currently recommended in Brazil, in soils with low K and subjected to nutrient leaching losses.
Resumo:
Slow-release and organic fertilizers are promising alternatives to conventional fertilizers, as both reduce losses by leaching, volatilization and problems of toxicity and/or salinity to plants. The objective of this work was to evaluate the effect of different rates of the organic fertilizer Humato-Macota® compared with the slow-release fertilizer Osmocote® on the growth and nitrogen content in the dry matter of Rangpur lime. A field experiment was conducted in a factorial completely randomized design with an additional treatment (4 x 4 +1). The first factor consisted of four HumatoMacota® rates (0, 1, 2, and 3%) applied to the substrate; the second factor consisted of the same Humato-Macota® concentrations, but applied as fortnightly foliar sprays; the additional treatment consisted of application of 5 kgm-3 Osmocote® 18-05-09. Means of all growth characteristics (plant height, total dry matter, root/shoot ratio and leaf area) and the potential quantum yield of photosystem II (Fv/Fm) were higher when plants were fertilized with the slow-release fertilizer. The organic fertilizer applied alone did not meet the N requirement of Rangpur lime.
Resumo:
The search for higher profitability in wheat crop with cost reduction technologies that may promote sustainability is an important matter in Brazilian agriculture. This study evaluated the profitability of no-tilled wheat, reducing nitrogen topdressing doses with the cultivation of green manure before the wheat crop. The experiment was carried out in Selvíria (MS), Brazil, in 2009/10. The experiment was arranged in a randomized block design with 36 treatments in splitplots and four replicates. The plots were formed by six types of green manure: Cajanus cajan L. BRS Mandarin, Crotalaria juncea L., Pennisetum americanum L. BRS 1501, fallow area and mixed cropping of Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + crotalaria which provided straw for no-tilled wheat in the winter, following the rice crop in the summer. The subplots were formed by six levels of topdressing nitrogen (0, 25, 50, 75, 100 and 125 kg N ha-1) using urea as a nitrogen source. The wheat grown after green manure in the previous winter crop, with no nitrogen topdressing and a rate of 25 kg ha-1 N, had more frequently production costs above the gross income. Wheat production cost after the mixed cropping Pennisetum americanum L. + Cajanus cajan L. and Pennisetum americanum L. + Crotalaria juncea L. from the previous winter crop, combined with nitrogen rates of 50 and 75 kg N ha-1, provided better profitability compared with the other green manures evaluated.