38 resultados para neuronal BACE1

em Scielo Saúde Pública - SP


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ten male Wistar rats, chronically infected with Colombian, São Felipe (12SF) and Y strains of Trypanosoma cruzi and ten non-infected control animals were submitted to the bradycardia responsiveness test, an assessment of heart parasympathetic function, after phenylephrine injection. Six chagasic animals showed heart parasympathetic dysfuntion characterized by reduction in the index of bradycardia baroreflex responsiveness, as compared with the control group. Microscopic examination of the atrial heart ganglia of chagasic rats showed ganglionitis, but no statiscally significant reduction in the number of neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Revendo a literatura não encontramos estudos anatômicos dos gânglios intrapancreáticos na forma crônica da doença de Chagas; lesões dos mesmos poderiam explicar, ao menos em parte, os distúrbios funcionais do pâncreas exócrino e endócrino descritos nesta forma da doença. Decidimos então analisar morfologicamente tais gânglios. Para isso, estudamos segmentos transversais da cabeça, corpo e cauda do pâncreas de doze chagásicos crônicos, com idade média de 46,5 ± 9,1 anos, e quatorze controles, com idade média de 41,2 ± 11,0 anos. Os segmentos foram processados histologicamente e seccionados de forma seriada até o esgotamento, analisando-se os cortes múltiplos de sete. Para análise estatística, usamos o teste não-paramétrico de Mann-Whitney. Na cabeça do pâncreas, a contagem de neurônios teve média de 57,3 ± 50,8 para o grupo chagásico e 117,5 ± 99,0 para o grupo controle (p < 0,05); no corpo, 25,9 ± 19,4 para o grupo chagásico e 54,7 ± 47,8 para o controle (p < 0,05); na cauda, 23,4 ± 16,3 para o chagásico e 54,1 ± 29,2 para o controle (p < 0,01), sendo a contagem total de 106,6 ± 71,1 para o chagásico e 226,3 ± 156,5 para o controle (p < 0,01). Nossos achados nos permitiram concluir que: a) ocorreu despopulação neuronal estatisticamente significante no grupo chagásico em relação ao controle, em cada segmento pancreático analisado, bem como no órgão como um todo; b) 50% dos chagásicos tiveram número total de neurônios inferior ao menor número dos controles (80); c) 75% e 91,6% dos chagásicos tiveram número de neurônios inferior, respectivamente, à mediana (171) e à média (226) do grupo controle; d) assim, a despopulação neuronal pancreática foi frequente, porém não constante; e) o fator idade não pareceu ter sido o responsável pela despopulação neuronal dos chagásicos.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Com o objetivo de se obter um modelo experimental que permitisse estabelecer a despopulação (desnervação) neuronal cardíaca procurou-se pesquisar o comportamento do sistema nervoso intracardíaco em hamsters cronicamente infectados com o T. cruzi. Para tal fim, realizaram-se contagens dos neurônios do plexo nervoso autonômico intracardíaco em hamsters inoculados com 35.000 formas sangüíneas de três cepas diferentes, sacrificados 5, 8 e 10 meses depois da infecção. Demonstrou-se, pela primeira vez, destruição neuronal significativa num modelo experimental, similar à que ocorre na doença de Chagas humana.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A morphological and cell culture study from nasal mucosa of dogs was performed in order to establish a protocol to obtain a cell population committed to neuronal lineage, as a proposal for the treatment of traumatic and degenerative lesions in these animals, so that in the future these results could be applied to the human species. Twelve mongrel dogs of 60-day aged pregnancy were collected from urban pound dogs in São Paulo. Tissue from cribriform ethmoidal lamina of the fetuses was collected at necropsy under sterile conditions around 1h to 2h postmortem by uterine sections and sections from the fetal regions described above. Isolated cells of this tissue were added in DMEM/F-12 medium under standard conditions of incubation (5% CO², >37ºC). Cell culture based on isolated cells from biopsies of the olfactory epithelium showed rapid growth when cultured for 24 hours, showing phase-bright sphere cells found floating around the fragments, attached on culture flasks. After 20 days, a specific type of cells, predominantly ellipsoids or fusiform cells was characterized in vitro. The indirect immunofluorescence examination showed cells expressing markers of neuronal precursors (GFAP, neurofilament, oligodendrocyte, and III â-tubulin). The cell proliferation index showed Ki67 immunostaining with a trend to label cell groups throughout the apical region, while PCNA immunostaining label predominantly cell groups lying above the basal lamina. The transmission electron microscopy from the olfactory epithelium of dogs revealed cells with electron-dense cytoplasm and preserving the same distribution as those of positive cell staining for PCNA. Metabolic activity was confirmed by presence of euchromatin in the greatest part of cells. All these aspects give subsidies to support the hypothesis about resident progenitor cells among the basal cells of the olfactory epithelium, committed to renewal of these cell populations, especially neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

As a result of recent investigations, the cytoskeleton can be viewed as a cytoplasmic system of interconnected filaments with three major integrative levels: self-assembling macromolecules, filamentous polymers, e.g., microtubules, intermediate filaments and actin filaments, and supramolecular structures formed by bundles of these filaments or networks resulting from cross-bridges between these major cytoskeletal polymers. The organization of this biological structure appears to be sensitive to fine spatially and temporally dependent regulatory signals. In differentiating neurons, regulation of cytoskeleton organization is particularly relevant, and the microtubule-associated protein (MAP) tau appears to play roles in the extension of large neuritic processes and axons as well as in the stabilization of microtubular polymers along these processes. Within this context, tau is directly involved in defining neuronal polarity as well as in the generation of neuronal growth cones. There is increasing evidence that elements of the extracellular matrix contribute to the control of cytoskeleton organization in differentiating neurons, and that these regulations could be mediated by changes in MAP activity. In this brief review, we discuss the possible roles of tau in mediating the effects of extracellular matrix components on the internal cytoskeletal arrays and its organization in growing neurons.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Targeted disruption of the neuronal nitric oxide synthase (nNOS) and endothelial nitric oxide synthase (eNOS) genes has led to knockout mice that lack these isoforms. These animal models have been useful to study the roles of nitric oxide (NO) in physiologic processes. nNOS knockout mice have enlarged stomachs and defects in the inhibitory junction potential involved in gastrointestinal motility. eNOS knockout mice are hypertensive and lack endothelium-derived relaxing factor activity. When these animals are subjected to models of focal ischemia, the nNOS mutant mice develop smaller infarcts, consistent with a role for nNOS in neurotoxicity following cerebral ischemia. In contrast, eNOS mutant mice develop larger infarcts, and show a more pronounced hemodynamic effect of vascular occlusion. The knockout mice also show that nNOS and eNOS isoforms differentially modulate the release of neurotransmitters in various regions of the brain. eNOS knockout mice respond to vessel injury with greater neointimal proliferation, confirming that reduced NO levels seen in endothelial dysfunction change the vessel response to injury. Furthermore, eNOS mutant mice still show a protective effect of female gender, indicating that the mechanism of this protection cannot be limited to upregulation of eNOS expression. The eNOS mutant mice also prove that eNOS modulates the cardiac contractile response to ß-adrenergic agonists and baseline diastolic relaxation. Atrial natriuretic peptide, upregulated in the hearts of eNOS mutant mice, normalizes cGMP levels and restores normal diastolic relaxation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has been demonstrated that nitric oxide (NO) has a thermoregulatory action, but very little is known about the mechanisms involved. In the present study we determined the effect of neuronal nitric oxide synthase (nNOS) inhibition on thermoregulation. We used 7-nitroindazole (7-NI, 1, 10 and 30 mg/kg body weight), a selective nNOS inhibitor, injected intraperitoneally into normothermic Wistar rats (200-250 g) and rats with fever induced by lipopolysaccharide (LPS) (100 µg/kg body weight) administration. It has been demonstrated that the effects of 30 mg/kg of 7-NI given intraperitoneally may inhibit 60% of nNOS activity in rats. In all experiments the colonic temperature of awake unrestrained rats was measured over a period of 5 h at 15-min intervals after intraperitoneal injection of 7-NI. We observed that the injection of 30 mg/kg of 7-NI induced a 1.5oC drop in body temperature, which was statistically significant 1 h after injection (P<0.02). The coinjection of LPS and 7-NI was followed by a significant (P<0.02) hypothermia about 0.5oC below baseline. These findings show that an nNOS isoform is required for thermoregulation and participates in the production of fever in rats.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Peripheral axonal regeneration was investigated in adult male mice of the C57BL/6J (C), BALB/cJ (B) and A/J (A) strains and in their F1 descendants using a predegenerated nerve transplantation model. Four types of transplants were performed: 1) isotransplants between animals of the C, B and A strains; 2) donors of the C strain and recipients of the C x B and C x A breeding; 3) donors of the B strain and recipients of the C x B breeding, and 4) donors of the A strain and recipients of the C x A breeding. Donors had the left sciatic nerve transected and two weeks later a segment of the distal stump was transplanted into the recipient. Four weeks after transplantation the regenerated nerves were used to determine the total number of regenerated myelinated fibers (TMF), diameter of myelinated fibers (FD) and myelin thickness (MT). The highest TMF values were obtained in the groups where C57BL/6J mice were the donors (C to F1 (C x B) = 4658 ± 304; C to F1 (C x A) = 3899 ± 198). Also, A/J grafts led to a significantly higher TMF (A to F1 (C x A) = 3933 ± 565). Additionally, isotransplant experiments showed that when the nerve is previously degenerated, C57BL/6J mice display the largest number of myelinated fibers (C to C = 3136 ± 287; B to B = 2759 ± 170, and A to A = 2835 ± 239). We also observed that when C57BL/6J was the graft donor, FD was the highest and MT did not differ significantly when compared with the other groups. These morphometric results reinforce the idea that Schwann cells and the nerve environment of C57BL/6J provide enough support to the regenerative process. In this respect, the present results support the hypothesis that the non-neuronal cells, mainly Schwann cells, present in the sciatic nerve of C57BL/6J mice are not the main limiting factor responsible for low axonal regeneration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteoglycans are abundant in the developing brain and there is much circumstantial evidence for their roles in directional neuronal movements such as cell body migration and axonal growth. We have developed an in vitro model of astrocyte cultures of the lateral and medial sectors of the embryonic mouse midbrain, that differ in their ability to support neuritic growth of young midbrain neurons, and we have searched for the role of interactive proteins and proteoglycans in this model. Neurite production in co-cultures reveals that, irrespective of the previous location of neurons in the midbrain, medial astrocytes exert an inhibitory or nonpermissive effect on neuritic growth that is correlated to a higher content of both heparan and chondroitin sulfates (HS and CS). Treatment of astrocytes with chondroitinase ABC revealed a growth-promoting effect of CS on lateral glia but treatment with exogenous CS-4 indicated a U-shaped dose-response curve for CS. In contrast, the growth-inhibitory action of medial astrocytes was reversed by exogenous CS-4. Treatment of astrocytes with heparitinase indicated that the growth-inhibitory action of medial astrocytes may depend heavily on HS by an as yet unknown mechanism. The results are discussed in terms of available knowledge on the binding of HS proteoglycans to interactive proteins, with emphasis on the importance of unraveling the physiological functions of glial glycoconjugates for a better understanding of neuron-glial interactions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cell migration occurs extensively during mammalian brain development and persists in a few regions in the adult brain. Defective migratory behavior of neurons is thought to be the underlying cause of several congenital disorders. Knowledge of the dynamics and molecular mechanisms of neuronal movement could expand our understanding of the normal development of the nervous system as well as help decipher the pathogenesis of neurological developmental disorders. In our studies we have identified and characterized a specific ganglioside (9-O-acetyl GD3) localized to the membrane of neurons and glial cells that is expressed in regions of cell migration and neurite outgrowth in the developing and adult rat nervous system. In the present article we review our findings that demonstrate the functional role of this molecule in neuronal motility.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigated the level of expression of neuronal nitric oxide synthase (nNOS) in the retinorecipient layers of the rat superior colliculus during early postnatal development. Male and female Lister rats ranging in age between the day of birth (P0) and the fourth postnatal week were used in the present study. Two biochemical methods were used, i.e., in vitro measurement of NOS specific activity by the conversion of [³H]-arginine to [³H]-citrulline, and analysis of Western blotting immunoreactive bands from superior colliculus homogenates. As revealed by Western blotting, very weak immunoreactive bands were observed as early as P0-2, and their intensity increased progressively at least until P21. The analysis of specific activity of NOS showed similar results. There was a progressive increase in enzymatic activity until near the end of the second postnatal week, and a nonsignificant tendency to an increase until the end of the third week was also observed. Thus, these results indicated an increase in the amount of nNOS during the first weeks after birth. Our results confirm and extend previous reports using histochemistry for NADPH-diaphorase and immunocytochemistry for nNOS, which showed a progressive increase in the number of stained cells in the superficial layers during the first two postnatal weeks, reaching an adult pattern at the end of the third week. Furthermore, our results suggested that nNOS is present in an active form in the rat superior colliculus during the period of refinement of the retinocollicular pathway.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Normal central nervous system development relies on accurate intrinsic cellular programs as well as on extrinsic informative cues provided by extracellular molecules. Migration of neuronal progenitors from defined proliferative zones to their final location is a key event during embryonic and postnatal development. Extracellular matrix components play important roles in these processes, and interactions between neurons and extracellular matrix are fundamental for the normal development of the central nervous system. Guidance cues are provided by extracellular factors that orient neuronal migration. During cerebellar development, the extracellular matrix molecules laminin and fibronectin give support to neuronal precursor migration, while other molecules such as reelin, tenascin, and netrin orient their migration. Reelin and tenascin are extracellular matrix components that attract or repel neuronal precursors and axons during development through interaction with membrane receptors, and netrin associates with laminin and heparan sulfate proteoglycans, and binds to the extracellular matrix receptor integrins present on the neuronal surface. Altogether, the dynamic changes in the composition and distribution of extracellular matrix components provide external cues that direct neurons leaving their birthplaces to reach their correct final location. Understanding the molecular mechanisms that orient neurons to reach precisely their final location during development is fundamental to understand how neuronal misplacement leads to neurological diseases and eventually to find ways to treat them.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Central angiotensin II (AngII) stimulates water and salt solution intake. Pretreatment with low-dose mineralocorticoid (DOCA) enhances this AngII-induced intake of salt solutions (the synergy theory) in Wistar and Sprague Dawley rats but not in Fischer rats. This response is mediated via the AT-1 receptor. Electrophysiological experiments using iontophoretic application of AngII and the AT-1 receptor-specific non-peptide antagonist losartan showed excitation of neurons in the preoptic/medial septum region of urethane-anesthetized male Wistar rats. DOCA pretreatment further enhances this neuronal excitation in response to AngII and reduces the responses to losartan. This generated the hypothesis that DOCA-enhanced AngII-induced neuronal excitation is the neural support for the synergy theory. AT-2 receptors modulate these intake responses depending on sodium in the diet, and diuretic-induced dehydration during pregnancy produces a higher salt intake in the offspring. AngII-induced salt and water intakes were tested in offspring from Sprague Dawley mothers with only 1.8% NaCl to drink in which half were treated with furosemide. The important observations were a) the AT-1 antagonist alone suppressed intakes in offspring from mothers not treated with furosemide, b) both AT-1 and AT-2 antagonists suppressed intakes in offspring from furosemide-treated mothers, and c) combined administration of AT-1 and AT-2 antagonists greatly suppressed water intake in offspring from mothers not treated with furosemide. These results suggest that AT-1 and AT-2 receptors have variable properties (receptor number and/or second messengers). Furthermore, the activity and function of these central AngII receptors depend on the background mineralocorticoid levels. The exact mechanism of this influence, however, remains to be determined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hippocampal output is increased in affective disorders and is mediated by increased glutamatergic input via N-methyl-D-aspartate (NMDA) receptor and moderated by antidepressant treatment. Activation of NMDA receptors by glutamate evokes the release of nitric oxide (NO) by the activation of neuronal nitric oxide synthase (nNOS). The human hippocampus contains a high density of NMDA receptors and nNOS-expressing neurons suggesting the existence of an NMDA-NO transduction pathway which can be involved in the pathogenesis of affective disorders. We tested the hypothesis that nNOS expression is increased in the human hippocampus from affectively ill patients. Immunocytochemistry was used to demonstrate nNOS-expressing neurons in sections obtained from the Stanley Consortium postmortem brain collection from patients with major depression (MD, N = 15), bipolar disorder (BD, N = 15), and schizophrenia (N = 15) and from controls (N = 15). nNOS-immunoreactive (nNOS-IR) and Nissl-stained neurons were counted in entorhinal cortex, hippocampal CA1, CA2, CA3, and CA4 subfields, and subiculum. The numbers of Nissl-stained neurons were very similar in different diagnostic groups and correlated significantly with the number of nNOS-IR neurons. Both the MD and the BD groups had greater number of nNOS-IR neurons/400 µm² in CA1 (mean ± SEM: MD = 9.2 ± 0.6 and BD = 8.4 ± 0.6) and subiculum (BD = 6.7 ± 0.4) when compared to control group (6.6 ± 0.5) and this was significantly more marked in samples from the right hemisphere. These changes were specific to affective disorders since no changes were seen in the schizophrenic group (6.7 ± 0.8). The results support the current view of the NMDA-NO pathway as a target for the pathophysiology of affective disorders and antidepressant drug development.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nitric oxide (NO) is a molecular messenger involved in several events of synaptic plasticity in the central nervous system. Ca2+ influx through the N-methyl-D-aspartate receptor (NMDAR) triggers the synthesis of NO by activating the enzyme neuronal nitric oxide synthase (nNOS) in postsynaptic densities. Therefore, NMDAR and nNOS are part of the intricate scenario of postsynaptic densities. In the present study, we hypothesized that the intracellular distribution of nNOS in the neurons of superior colliculus (SC) superficial layers is an NMDAR activity-dependent process. We used osmotic minipumps to promote chronic blockade of the receptors with the pharmacological agent MK-801 in the SC of 7 adult rats. The effective blockade of NMDAR was assessed by changes in the protein level of the immediate early gene NGFI-A, which is a well-known NMDAR activity-dependent expressing transcription factor. Upon chronic infusion of MK-801, a decrease of 47% in the number of cells expressing NGFI-A was observed in the SC of treated animals. Additionally, the filled dendritic extent by the histochemical product of nicotinamide adenine di-nucleotide phosphate diaphorase was reduced by 45% when compared to the contralateral SC of the same animals and by 64% when compared to the SC of control animals. We conclude that the proper intracellular localization of nNOS in the retinorecipient layers of SC depends on NMDAR activation. These results are consistent with the view that the participation of NO in the physiological and plastic events of the central nervous system might be closely related to an NMDAR activity-dependent function.