25 resultados para network modeling
em Scielo Saúde Pública - SP
Resumo:
This work presents the results of a Hybrid Neural Network (HNN) technique as applied to modeling SCFE curves obtained from two Brazilian vegetable matrices. A series Hybrid Neural Network was employed to estimate the parameters of the phenomenological model. A small set of SCFE data of each vegetable was used to generate an extended data set, sufficient to train the network. Afterwards, other sets of experimental data, not used in the network training, were used to validate the present approach. The series HNN correlates well the experimental data and it is shown that the predictions accomplished with this technique may be promising for SCFE purposes.
Resumo:
Soil infiltration is a key link of the natural water cycle process. Studies on soil permeability are conducive for water resources assessment and estimation, runoff regulation and management, soil erosion modeling, nonpoint and point source pollution of farmland, among other aspects. The unequal influence of rainfall duration, rainfall intensity, antecedent soil moisture, vegetation cover, vegetation type, and slope gradient on soil cumulative infiltration was studied under simulated rainfall and different underlying surfaces. We established a six factor-model of soil cumulative infiltration by the improved back propagation (BP)-based artificial neural network algorithm with a momentum term and self-adjusting learning rate. Compared to the multiple nonlinear regression method, the stability and accuracy of the improved BP algorithm was better. Based on the improved BP model, the sensitive index of these six factors on soil cumulative infiltration was investigated. Secondly, the grey relational analysis method was used to individually study grey correlations among these six factors and soil cumulative infiltration. The results of the two methods were very similar. Rainfall duration was the most influential factor, followed by vegetation cover, vegetation type, rainfall intensity and antecedent soil moisture. The effect of slope gradient on soil cumulative infiltration was not significant.
Resumo:
Visible and near infrared (vis-NIR) spectroscopy is widely used to detect soil properties. The objective of this study is to evaluate the combined effect of moisture content (MC) and the modeling algorithm on prediction of soil organic carbon (SOC) and pH. Partial least squares (PLS) and the Artificial neural network (ANN) for modeling of SOC and pH at different MC levels were compared in terms of efficiency in prediction of regression. A total of 270 soil samples were used. Before spectral measurement, dry soil samples were weighed to determine the amount of water to be added by weight to achieve the specified gravimetric MC levels of 5, 10, 15, 20, and 25 %. A fiber-optic vis-NIR spectrophotometer (350-2500 nm) was used to measure spectra of soil samples in the diffuse reflectance mode. Spectra preprocessing and PLS regression were carried using Unscrambler® software. Statistica® software was used for ANN modeling. The best prediction result for SOC was obtained using the ANN (RMSEP = 0.82 % and RPD = 4.23) for soil samples with 25 % MC. The best prediction results for pH were obtained with PLS for dry soil samples (RMSEP = 0.65 % and RPD = 1.68) and soil samples with 10 % MC (RMSEP = 0.61 % and RPD = 1.71). Whereas the ANN showed better performance for SOC prediction at all MC levels, PLS showed better predictive accuracy of pH at all MC levels except for 25 % MC. Therefore, based on the data set used in the current study, the ANN is recommended for the analyses of SOC at all MC levels, whereas PLS is recommended for the analysis of pH at MC levels below 20 %.
Resumo:
In this study, water uptake by poultry carcasses during cooling by water immersion was modeled using artificial neural networks. Data from twenty-five independent variables and the final mass of the carcass were collected in an industrial plant to train and validate the model. Different network structures with one hidden layer were tested, and the Downhill Simplex method was used to optimize the synaptic weights. In order to accelerate the optimization calculus, Principal Component Analysis (PCA) was used to preprocess the input data. The obtained results were: i) PCA reduced the number of input variables from twenty-five to ten; ii) the neural network structure 4-6-1 was the one with the best result; iii) PCA gave the following order of importance: parameters of mass transfer, heat transfer, and initial characteristics of the carcass. The main contributions of this work were to provide an accurate model for predicting the final content of water in the carcasses and a better understanding of the variables involved.
Resumo:
In this study, the effects of hot-air drying conditions on color, water holding capacity, and total phenolic content of dried apple were investigated using artificial neural network as an intelligent modeling system. After that, a genetic algorithm was used to optimize the drying conditions. Apples were dried at different temperatures (40, 60, and 80 °C) and at three air flow-rates (0.5, 1, and 1.5 m/s). Applying the leave-one-out cross validation methodology, simulated and experimental data were in good agreement presenting an error < 2.4 %. Quality index optimal values were found at 62.9 °C and 1.0 m/s using genetic algorithm.
Resumo:
This article recommends a new way to improve Refugee Status Determination (RSD) procedures by proposing a network society communicative model based on active involvement and dialogue among all implementing partners. This model, named after proposals from Castells, Habermas, Apel, Chimni, and Betts, would be mediated by the United Nations High Commissioner for Refugees (UNHCR), whose role would be modeled after that of the International Committee of the Red Cross (ICRC) practice.
Resumo:
This paper analyzes People's Republic of China (PRC) economic and political ascendance in the 21st century focusing on the evolution of the sui generis economic development model and its significances of the evolution of relationship between China and the developing countries in the peripheral "Global South." The objective of this article is to analyze the relationship between China and the Global South (Africa and South America) in the 21st century, characterized as a new Center-periphery global network power based on trade and investment that we call as "Asian Consensus."
Resumo:
This paper aims to cast some light on the dynamics of knowledge networks in developing countries by analyzing the scientific production of the largest university in the Northeast of Brazil and its influence on some of the remaining regional research institutions in the state of Bahia. Using a methodology test to be employed in a larger project, the Universidade Federal da Bahia (UFBA) (Federal University of Bahia), the Universidade do Estado da Bahia (Uneb) (State of Bahia University) and the Universidade Estadual de Santa Cruz (Uesc)'s (Santa Cruz State University) scientific productions are discussed in one of their most traditionally expressive sectors in academic production - namely, the field of chemistry, using social network analysis of co-authorship networks to investigate the existence of small world phenomena and the importance of these phenomena in research performance in these three universities. The results already obtained through this research bring to light data of considerable interest concerning the scientific production in unconsolidated research universities. It shows the important participation of the UFBA network in the composition of the other two public universities research networks, indicating a possible occurrence of small world phenomena in the UFBA and Uesc networks, as well as the importance of individual researchers in consolidating research networks in peripheral universities. The article also hints that the methodology employed appears to be adequate insofar as scientific production may be used as a proxy for scientific knowledge.
Resumo:
In order to sustain their competitive advantage in the current increasingly globalized and turbulent context, more and more firms are competing globally in alliances and networks that oblige them to adopt new managerial paradigms and tools. However, their strategic analyses rarely take into account the strategic implications of these alliances and networks, considering their global relational characteristics, admittedly because of a lack of adequate tools to do so. This paper contributes to research that seeks to fill this gap by proposing the Global Strategic Network Analysis - SNA - framework. Its purpose is to help firms that compete globally in alliances and networks to carry out their strategic assessments and decision-making with a view to ensuring dynamic strategic fit from both a global and relational perspective.
Resumo:
This article presents a systematic framework for modeling several classes of illness-sickness-disease named as Holopathogenesis. Holopathogenesis is defined as processes of over-determination of diseases and related conditions taken as a whole, comprising selected facets of the complex object Health. First, a conceptual background of Holopathogenesis is presented as a series of significant interfaces (biomolecular-immunological, physiopathological-clinical, epidemiological-ecosocial). Second, propositions derived from Holopathogenesis are introduced in order to allow drawing the disease-illness-sickness complex as a hierarchical network of networks. Third, a formalization of intra- and inter-level correspondences, over-determination processes, effects and links of Holopathogenesis models is proposed. Finally, the Holopathogenesis frame is evaluated as a comprehensive theoretical pathology taken as a preliminary step towards a unified theory of health-disease.
Resumo:
OBJECTIVE To analyze the association between concentrations of air pollutants and admissions for respiratory causes in children. METHODS Ecological time series study. Daily figures for hospital admissions of children aged < 6, and daily concentrations of air pollutants (PM10, SO2, NO2, O3 and CO) were analyzed in the Região da Grande Vitória, ES, Southeastern Brazil, from January 2005 to December 2010. For statistical analysis, two techniques were combined: Poisson regression with generalized additive models and principal model component analysis. Those analysis techniques complemented each other and provided more significant estimates in the estimation of relative risk. The models were adjusted for temporal trend, seasonality, day of the week, meteorological factors and autocorrelation. In the final adjustment of the model, it was necessary to include models of the Autoregressive Moving Average Models (p, q) type in the residuals in order to eliminate the autocorrelation structures present in the components. RESULTS For every 10:49 μg/m3 increase (interquartile range) in levels of the pollutant PM10 there was a 3.0% increase in the relative risk estimated using the generalized additive model analysis of main components-seasonal autoregressive – while in the usual generalized additive model, the estimate was 2.0%. CONCLUSIONS Compared to the usual generalized additive model, in general, the proposed aspect of generalized additive model − principal component analysis, showed better results in estimating relative risk and quality of fit.
Resumo:
ABSTRACT OBJECTIVE To develop an assessment tool to evaluate the efficiency of federal university general hospitals. METHODS Data envelopment analysis, a linear programming technique, creates a best practice frontier by comparing observed production given the amount of resources used. The model is output-oriented and considers variable returns to scale. Network data envelopment analysis considers link variables belonging to more than one dimension (in the model, medical residents, adjusted admissions, and research projects). Dynamic network data envelopment analysis uses carry-over variables (in the model, financing budget) to analyze frontier shift in subsequent years. Data were gathered from the information system of the Brazilian Ministry of Education (MEC), 2010-2013. RESULTS The mean scores for health care, teaching and research over the period were 58.0%, 86.0%, and 61.0%, respectively. In 2012, the best performance year, for all units to reach the frontier it would be necessary to have a mean increase of 65.0% in outpatient visits; 34.0% in admissions; 12.0% in undergraduate students; 13.0% in multi-professional residents; 48.0% in graduate students; 7.0% in research projects; besides a decrease of 9.0% in medical residents. In the same year, an increase of 0.9% in financing budget would be necessary to improve the care output frontier. In the dynamic evaluation, there was progress in teaching efficiency, oscillation in medical care and no variation in research. CONCLUSIONS The proposed model generates public health planning and programming parameters by estimating efficiency scores and making projections to reach the best practice frontier.
Resumo:
Chagas disease is a chronic, tropical, parasitic disease, endemic throughout Latin America. The large-scale migration of populations has increased the geographic distribution of the disease and cases have been observed in many other countries around the world. To strengthen the critical mass of knowledge generated in different countries, it is essential to promote cooperative and translational research initiatives. We analyzed authorship of scientific documents on Chagas disease indexed in the Medline database from 1940 to 2009. Bibliometrics was used to analyze the evolution of collaboration patterns. A Social Network Analysis was carried out to identify the main research groups in the area by applying clustering methods. We then analyzed 13,989 papers produced by 21,350 authors. Collaboration among authors dramatically increased over the study period, reaching an average of 6.2 authors per paper in the last five-year period. Applying a threshold of collaboration of five or more papers signed in co-authorship, we identified 148 consolidated research groups made up of 1,750 authors. The Chagas disease network identified constitutes a "small world," characterized by a high degree of clustering and a notably high number of Brazilian researchers.
Resumo:
Pirarucu (Arapaima gigas) has been of the most important natural fishing resources of the Amazon region. Due to its economic importance, and the necessity to preserve the species hand, field research concerning the habits and behavior of the pirarucu has been increasing for the last 20 years. The aim of this paper is to present a mathematical model for the pirarucu population dynamics considering the species peculiarities, particularly the male parental care over the offspring. The solution of the dynamical systems indicates three possible equilibrium points for the population. The first corresponds to extinction; the third corresponds to a stable population close to the environmental carrying capacity. The second corresponds to an unstable equilibrium located between extinction and full use of the carrying capacity. It is shown that lack of males’ parental care closes the gap between the point corresponding to the unstable equilibrium and the point of stable non-trivial equilibrium. If guarding failure reaches a critical point the two points coincide and the population tends irreversibly to extinction. If some event tends to destabilize the population equilibrium, as for instance inadequate parental care, the model responds in such a way as to restore the trajectory towards the stable equilibrium point avoiding the route to extinction. The parameters introduced to solve the system of equations are partially derived from limited but reliable field data collected at the Mamirauá Sustainable Development Reserve (MSDR) in the Brazilian Amazonian Region.
Resumo:
Abstract Clinical decision-making requires synthesis of evidence from literature reviews focused on a specific theme. Evidence synthesis is performed with qualitative assessments and systematic reviews of randomized clinical trials, typically covering statistical pooling with pairwise meta-analyses. These methods include adjusted indirect comparison meta-analysis, network meta-analysis, and mixed-treatment comparison. These tools allow synthesis of evidence and comparison of effectiveness in cardiovascular research.