28 resultados para nearest-neighbour
em Scielo Saúde Pública - SP
Resumo:
The feasibility of using augmented block designs and spatial analysis methods for early stage selection in eucalyptus breeding programs was tested. A total of 113 half-sib progenies of Eucalyptus urophylla and eight clones were evaluated in an 11 x 11 triple lattice experiment at two locations: Posto da Mata (Bahia, Brazil) and São Mateus (Minas Gerais, Brazil). Four checks were randomly allocated within each block. Plots consisted of 15 m long rows containing 6 plants spaced 3 m apart. The girth at breast height (cm/plant) was evaluated at 19 and 26 months of age. Variance analyses were performed according to the following methods: lattice design, randomized complete block design, augmented block design, Papadakis method, moving means method, and check plots. Comparisons among different methods were based on the magnitude of experimental errors and precision of the estimates of genetic and phenotypic parameters. General results indicated that augmented block design is useful to evaluate progenies and clones in early selection in eucalyptus breeding programs using moderate and low selection intensities. However, this design is not suitable for estimating genetic and phenotypic parameters due to its low precision. Check plots, nearest neighbour, Papadakis (1937), and moving means methods were efficient in removing the heterogeneity within blocks. These efficiencies were compared to that in lattice analysis for estimation of genetic and phenotypic parameters.
Resumo:
A new species, Hibiscus amazonicus, is described from the Amazon Basin. Characters distinguishing the new species from its nearest relatives presented.
Resumo:
Species distribution modeling has relevant implications for the studies of biodiversity, decision making about conservation and knowledge about ecological requirements of the species. The aim of this study was to evaluate if the use of forest inventories can improve the estimation of occurrence probability, identify the limits of the potential distribution and habitat preference of a group of timber tree species. The environmental predictor variables were: elevation, slope, aspect, normalized difference vegetation index (NDVI) and height above the nearest drainage (HAND). To estimate the distribution of species we used the maximum entropy method (Maxent). In comparison with a random distribution, using topographic variables and vegetation index as features, the Maxent method predicted with an average accuracy of 86% the geographical distribution of studied species. The altitude and NDVI were the most important variables. There were limitations to the interpolation of the models for non-sampled locations and that are outside of the elevation gradient associated with the occurrence data in approximately 7% of the basin area. Ceiba pentandra (samaúma), Castilla ulei (caucho) and Hura crepitans (assacu) is more likely to occur in nearby water course areas. Clarisia racemosa (guariúba), Amburana acreana (cerejeira), Aspidosperma macrocarpon (pereiro), Apuleia leiocarpa (cumaru cetim), Aspidosperma parvifolium (amarelão) and Astronium lecointei (aroeira) can also occur in upland forest and well drained soils. This modeling approach has potential for application on other tropical species still less studied, especially those that are under pressure from logging.
Resumo:
1) It may seem rather strange that, in spite of the efforts of a considerable number of scientists, the problem of the origin of indian corn or maize still has remained an open question. There are no fossil remains or archaeological relics except those which are quite identical with types still existing. (Fig. 1). The main difficulty in finding the wild ancestor- which may still exist - results from the fact that it has been somewhat difficult to decide what it should be like and also where to look for it. 2) There is no need to discuss the literature since an excellent review has recently been published by MANGELSDORF and REEVES (1939). It may be sufficient to state that there are basically two hypotheses, that of ST. HILAIRE (1829) who considered Brazilian pod corn as the nearest relative of wild corn still existing, and that of ASCHERSON (1875) who considered Euchlaena from Central America as the wild ancestor of corn. Later hypotheses represent or variants of these two hypotheses or of other concepts, howewer generally with neither disproving their predecessors nor showing why the new hypotheses were better than the older ones. Since nearly all possible combinations of ideas have thus been put forward, it har- dly seems possible to find something theoretically new, while it is essential first to produce new facts. 3) The studies about the origin of maize received a new impulse from MANGELSDORF and REEVES'S experimental work on both Zea-Tripsacum and Zea-Euchlaena hybrids. Independently I started experiments in 1937 with the hope that new results might be obtained when using South American material. Having lost priority in some respects I decided to withold publication untill now, when I can put forward more concise ideas about the origin of maize, based on a new experimental reconstruction of the "wild type". 4) The two main aspects of MANGELSDORF and REEVES hypothesis are discussed. We agree with the authors that ST. HILAIRE's theory is probably correct in so far as the tunicata gene is a wild type relic gene, but cannot accept the reconstruction of wild corn as a homozygous pod corn with a hermaphroditic tassel. As shown experimentally (Fig. 2-3) these tassels have their central spike transformed into a terminal, many rowed ear with a flexible rachis, while possessing at the same time the lateral ear. Thus no explanation is given of the origin of the corn ear, which is the main feature of cultivated corn (BRIEGER, 1943). The second part of the hypothesis referring to the origin of Euchlaena from corn, inverting thus ASCHERSON's theory, cannot be accepted for several reasons, stated in some detail. The data at hand justify only the conclusion that both genera, Euchlaena and Zea, are related, and there is as little proof for considering the former as ancestor of the latter as there is for the new inverse theory. 5) The analysis of indigenous corn, which will be published in detail by BRIEGER and CUTLER, showed several very primitive characters, but no type was found which was in all characters sufficiently primitive. A genetical analysis of Paulista Pod Corn showed that it contains the same gene as other tunicates, in the IV chromosome, the segregation being complicated by a new gametophyte factor Ga3. The full results of this analysis shall be published elsewhere. (BRIEGER). Selection experiments with Paulista Pod Corn showed that no approximation to a wild ancestor may be obtained when limiting the studies to pure corn. Thus it seemed necessary to substitute "domesticated" by "wild type" modifiers, and the only means for achieving this substitution are hybridizations with Euchlaena. These hybrids have now been analysed init fourth generation, including backcrosses, and, again, the full data will be published elsewhere, by BRIEGER and ADDISON. In one present publication three forms obtained will be described only, which represent an approximation to wild type corn. 6) Before entering howewer into detail, some arguments against ST. HILAIRE's theory must be mentioned. The premendelian argument, referring to the instability of this character, is explained by the fact that all fertile pod corn plants are heterozygous for the dominant Tu factor. But the sterility of the homozygous TuTu, which phenotypically cannot be identified, is still unexplained. The most important argument against the acceptance of the Tunicata faetor as wild type relic gene was removed recently by CUTLER (not yet published) who showed that this type has been preserved for centuries by the Bolivian indians as a mystical "medicine". 7) The main botanical requirements for transforming the corn ear into a wild type structure are stated, and alternative solutions given. One series of these characters are found in Tripsacum and Euchlaena : 2 rows on opposite sides of the rachis, protection of the grains by scales, fragility of the rachis. There remains the other alternative : 4 rows, possibly forming double rows of female and male spikelets, protection of kernels by their glumes, separation of grains at their base from the cob which is thin and flexible. 8) Three successive stages in the reconstruction of wild corn, obtained experimentally, are discussed and illustrated, all characterized by the presence of the Tu gene. a) The structure of the Fl hybrids has already been described in 1943. The main features of the Tunicata hybrids (Fig. -8), when compared with non-tunicate hybrids (Fig. 5-6), consist in the absence of scaly protections, the fragility of the rachis and finally the differentiation of the double rows into one male and one female spikelet. As has been pointed out, these characters represent new phenotypic effects of the tunicate factor which do not appear in the presence of pure maize modifiers. b) The next step was observed among the first backcross to teosinte (Fig. 9). As shown in the photography, Fig. 9D, the features are essencially those of the Fl plants, except that the rachis is more teosinte like, with longer internodes, irregular four-row-arrangement and a complete fragility on the nodes. c) In the next generation a completely new type appeared (Fig. 10) which resembles neither corn nor teosinte, mainly in consequence of one character: the rachis is thin and flexible and not fragile, while the grains have an abscission layer at the base, The medium sized, pointed, brownish and hard granis are protected by their well developed corneous glumes. This last form may not yet be the nearest approach to a wild grass, and I shall try in further experiments to introduce other changes such as an increase of fertile flowers per spikelet, the reduction of difference between terminal and lateral inflorescences, etc.. But the nature of the atavistic reversion is alveadwy such that it alters considerably our expectation when looking for a still existing wild ancestor of corn. 9) The next step in our deductions must now consist in an reversion of our question. We must now explain how we may obtain domesticated corn, starting from a hypothetical wild plant, similar to type c. Of the several changes which must have been necessary to attract the attention of the Indians, the following two seem to me the most important: the disappearance of all abscission layers and the reduction of the glumes. This may have been brought about by an accumulation of mutations. But it seems much more probable to assume that some crossing with a tripsacoid grass or even with Tripsacum australe may have been responsible. In such a cross, the two types of abscission layer would be counterbalanced as shown by the Flhybrids of corn, Tripsacum and Euchlaena. Furthermore in later generations a.tu-allele of Tripsacum may become homozygous and substitute the wild tunicate factor of corn. The hypothesis of a hybrid origin of cultivated corn is not completely new, but has been discussed already by HARSHBERGER and COLLINS. Our hypothesis differs from that of MANGELSDORF and REEVES who assume that crosses with Tripsacum are responsible only for some features of Central and North American corn. 10) The following arguments give indirects evidence in support of our hypothesis: a) Several characters have been observed in indigenous corn from the central region of South America, which may be interpreted as "tripsacoid". b) Equally "zeoid" characters seem to be present in Tripsacum australe of central South-America. c) A system of unbalanced factors, combined by the in-tergeneric cross, may be responsible for the sterility of the wild type tunicata factor when homozygous, a result of the action of modifiers, brought in from Tripsacum together with the tuallele. d) The hybrid theory may explain satisfactorily the presence of so many lethals and semilethals, responsible for the phenomenon of inbreeding in cultivated corn. It must be emphasized that corn does not possess any efficient mechanism to prevent crossing and which could explain the accumulation of these mutants during the evolutionary process. Teosinte which'has about the same mechanism of sexual reproduction has not accumulated such genes, nor self-sterile plants in spite of their pronounced preference for crossing. 11) The second most important step in domestication must have consisted in transforming a four rowed ear into an ear with many rows. The fusion theory, recently revived byLANGHAM is rejected. What happened evidently, just as in succulent pXants (Cactus) or in cones os Gymnosperms, is that there has been a change in phyllotaxy and a symmetry of longitudinal rows superimposed on the original spiral arrangement. 12) The geographical distribution of indigenous corn in South America has been discussed. So far, we may distinguish three zones. The most primitive corn appears in the central lowlands of what I call the Central Triangle of South America: east of the Andies, south of the Amazone-Basin, Northwest of a line formed by the rivers São Prancisco-Paraná and including the Paraguay-Basin. The uniformity of the types found in this extremely large zone is astonishing (BRIEGER and CUTLER). To the west, there is the well known Andian region, characterized by a large number of extremely diverse types from small pop corn to large Cuszco, from soft starch to modified sweet corn, from large cylindrical ears to small round ears, etc.. The third region extends along the atlantic coast in the east, from the Caribean Sea to the Argentine, and is characterized by Cateto, an orange hard flint corn. The Andean types must have been obtained very early, and undoubtedly are the result of the intense Inca agriculture. The Cateto type may be obtained easily by crosses, for instance, of "São Paulo Pointed Pop" to some orange soft corn of the central region. The relation of these three South American zones to Central and North America are not discussed, and it seems essential first to study the intermediate region of Ecuador, Colombia and Venezuela. The geograprical distribution of chromosome knobs is rapidly discussed; but it seems that no conclusions can be drawn before a large number of Tripsacum species has been analysed.
Resumo:
In thee present paper the classical concept of the corpuscular gene is dissected out in order to show the inconsistency of some genetical and cytological explanations based on it. The author begins by asking how do the genes perform their specific functions. Genetists say that colour in plants is sometimes due to the presence in the cytoplam of epidermal cells of an organic complex belonging to the anthocyanins and that this complex is produced by genes. The author then asks how can a gene produce an anthocyanin ? In accordance to Haldane's view the first product of a gene may be a free copy of the gene itself which is abandoned to the nucleus and then to the cytoplasm where it enters into reaction with other gene products. If, thus, the different substances which react in the cell for preparing the characters of the organism are copies of the genes then the chromosome must be very extravagant a thing : chain of the most diverse and heterogeneous substances (the genes) like agglutinins, precipitins, antibodies, hormones, erzyms, coenzyms, proteins, hydrocarbons, acids, bases, salts, water soluble and insoluble substances ! It would be very extrange that so a lot of chemical genes should not react with each other. remaining on the contrary, indefinitely the same in spite of the possibility of approaching and touching due to the stato of extreme distension of the chromosomes mouving within the fluid medium of the resting nucleus. If a given medium becomes acid in virtue of the presence of a free copy of an acid gene, then gene and character must be essentially the same thing and the difference between genotype and phenotype disappears, epigenesis gives up its place to preformation, and genetics goes back to its most remote beginnings. The author discusses the complete lack of arguments in support of the view that genes are corpuscular entities. To show the emharracing situation of the genetist who defends the idea of corpuscular genes, Dobzhansky's (1944) assertions that "Discrete entities like genes may be integrated into systems, the chromosomes, functioning as such. The existence of organs and tissues does not preclude their cellular organization" are discussed. In the opinion of the present writer, affirmations as such abrogate one of the most important characteristics of the genes, that is, their functional independence. Indeed, if the genes are independent, each one being capable of passing through mutational alterations or separating from its neighbours without changing them as Dobzhansky says, then the chromosome, genetically speaking, does not constitute a system. If on the other hand, theh chromosome be really a system it will suffer, as such, the influence of the alteration or suppression of the elements integrating it, and in this case the genes cannot be independent. We have therefore to decide : either the chromosome is. a system and th genes are not independent, or the genes are independent and the chromosome is not a syntem. What cannot surely exist is a system (the chromosome) formed by independent organs (the genes), as Dobzhansky admits. The parallel made by Dobzhansky between chromosomes and tissues seems to the author to be inadequate because we cannot compare heterogeneous things like a chromosome considered as a system made up by different organs (the genes), with a tissue formed, as we know, by the same organs (the cells) represented many times. The writer considers the chromosome as a true system and therefore gives no credit to the genes as independent elements. Genetists explain position effects in the following way : The products elaborated by the genes react with each other or with substances previously formed in the cell by the action of other gene products. Supposing that of two neighbouring genes A and B, the former reacts with a certain substance of the cellular medium (X) giving a product C which will suffer the action, of the latter (B). it follows that if the gene changes its position to a place far apart from A, the product it elaborates will spend more time for entering into contact with the substance C resulting from the action of A upon X, whose concentration is greater in the proximities of A. In this condition another gene produtc may anticipate the product of B in reacting with C, the normal course of reactions being altered from this time up. Let we see how many incongruencies and contradictions exist in such an explanation. Firstly, it has been established by genetists that the reaction due.to gene activities are specific and develop in a definite order, so that, each reaction prepares the medium for the following. Therefore, if the medium C resulting from the action of A upon x is the specific medium for the activity of B, it follows that no other gene, in consequence of its specificity, can work in this medium. It is only after the interference of B, changing the medium, that a new gene may enter into action. Since the genotype has not been modified by the change of the place of the gene, it is evident that the unique result we have to attend is a little delay without seious consequence in the beginning of the reaction of the product of B With its specific substratum C. This delay would be largely compensated by a greater amount of the substance C which the product of B should found already prepared. Moreover, the explanation did not take into account the fact that the genes work in the resting nucleus and that in this stage the chromosomes, very long and thin, form a network plunged into the nuclear sap. in which they are surely not still, changing from cell to cell and In the same cell from time to time, the distance separating any two genes of the same chromosome or of different ones. The idea that the genes may react directly with each other and not by means of their products, would lead to the concept of Goidschmidt and Piza, in accordance to which the chromosomes function as wholes. Really, if a gene B, accustomed to work between A and C (as for instance in the chromosome ABCDEF), passes to function differently only because an inversion has transferred it to the neighbourhood of F (as in AEDOBF), the gene F must equally be changed since we cannot almH that, of two reacting genes, only one is modified The genes E and A will be altered in the same way due to the change of place-of the former. Assuming that any modification in a gene causes a compensatory modification in its neighbour in order to re-establich the equilibrium of the reactions, we conclude that all the genes are modified in consequence of an inversion. The same would happen by mutations. The transformation of B into B' would changeA and C into A' and C respectively. The latter, reacting withD would transform it into D' and soon the whole chromosome would be modified. A localized change would therefore transform a primitive whole T into a new one T', as Piza pretends. The attraction point-to-point by the chromosomes is denied by the nresent writer. Arguments and facts favouring the view that chromosomes attract one another as wholes are presented. A fact which in the opinion of the author compromises sereously the idea of specific attraction gene-to-gene is found inthe behavior of the mutated gene. As we know, in homozygosis, the spme gene is represented twice in corresponding loci of the chromosomes. A mutation in one of them, sometimes so strong that it is capable of changing one sex into the opposite one or even killing the individual, has, notwithstading that, no effect on the previously existing mutual attraction of the corresponding loci. It seems reasonable to conclude that, if the genes A and A attract one another specifically, the attraction will disappear in consequence of the mutation. But, as in heterozygosis the genes continue to attract in the same way as before, it follows that the attraction is not specific and therefore does not be a gene attribute. Since homologous genes attract one another whatever their constitution, how do we understand the lack cf attraction between non homologous genes or between the genes of the same chromosome ? Cnromosome pairing is considered as being submitted to the same principles which govern gametes copulation or conjugation of Ciliata. Modern researches on the mating types of Ciliata offer a solid ground for such an intepretation. Chromosomes conjugate like Ciliata of the same variety, but of different mating types. In a cell there are n different sorts of chromosomes comparable to the varieties of Ciliata of the same species which do not mate. Of each sort there are in the cell only two chromosomes belonging to different mating types (homologous chromosomes). The chromosomes which will conjugate (belonging to the same "variety" but to different "mating types") produce a gamone-like substance that promotes their union, being without action upon the other chromosomes. In this simple way a single substance brings forth the same result that in the case of point-to-point attraction would be reached through the cooperation of as many different substances as the genes present in the chromosome. The chromosomes like the Ciliata, divide many times before they conjugate. (Gonial chromosomes) Like the Ciliata, when they reach maturity, they copulate. (Cyte chromosomes). Again, like the Ciliata which aggregate into clumps before mating, the chrorrasrmes join together in one side of the nucleus before pairing. (.Synizesis). Like the Ciliata which come out from the clumps paired two by two, the chromosomes leave the synizesis knot also in pairs. (Pachytene) The chromosomes, like the Ciliata, begin pairing at any part of their body. After some time the latter adjust their mouths, the former their kinetochores. During conjugation the Ciliata as well as the chromosomes exchange parts. Finally, the ones as the others separate to initiate a new cycle of divisions. It seems to the author that the analogies are to many to be overlooked. When two chemical compounds react with one another, both are transformed and new products appear at the and of the reaction. In the reaction in which the protoplasm takes place, a sharp difference is to be noted. The protoplasm, contrarily to what happens with the chemical substances, does not enter directly into reaction, but by means of products of its physiological activities. More than that while the compounds with Wich it reacts are changed, it preserves indefinitely its constitution. Here is one of the most important differences in the behavior of living and lifeless matter. Genes, accordingly, do not alter their constitution when they enter into reaction. Genetists contradict themselves when they affirm, on the one hand, that genes are entities which maintain indefinitely their chemical composition, and on the other hand, that mutation is a change in the chemica composition of the genes. They are thus conferring to the genes properties of the living and the lifeless substances. The protoplasm, as we know, without changing its composition, can synthesize different kinds of compounds as enzyms, hormones, and the like. A mutation, in the opinion of the writer would then be a new property acquired by the protoplasm without altering its chemical composition. With regard to the activities of the enzyms In the cells, the author writes : Due to the specificity of the enzyms we have that what determines the order in which they will enter into play is the chemical composition of the substances appearing in the protoplasm. Suppose that a nucleoproteln comes in relation to a protoplasm in which the following enzyms are present: a protease which breaks the nucleoproteln into protein and nucleic acid; a polynucleotidase which fragments the nucleic acid into nucleotids; a nucleotidase which decomposes the nucleotids into nucleoids and phosphoric acid; and, finally, a nucleosidase which attacs the nucleosids with production of sugar and purin or pyramidin bases. Now, it is evident that none of the enzyms which act on the nucleic acid and its products can enter into activity before the decomposition of the nucleoproteln by the protease present in the medium takes place. Leikewise, the nucleosidase cannot works without the nucleotidase previously decomposing the nucleotids, neither the latter can act before the entering into activity of the polynucleotidase for liberating the nucleotids. The number of enzyms which may work at a time depends upon the substances present m the protoplasm. The start and the end of enzym activities, the direction of the reactions toward the decomposition or the synthesis of chemical compounds, the duration of the reactions, all are in the dependence respectively o fthe nature of the substances, of the end products being left in, or retired from the medium, and of the amount of material present. The velocity of the reaction is conditioned by different factors as temperature, pH of the medium, and others. Genetists fall again into contradiction when they say that genes act like enzyms, controlling the reactions in the cells. They do not remember that to cintroll a reaction means to mark its beginning, to determine its direction, to regulate its velocity, and to stop it Enzyms, as we have seen, enjoy none of these properties improperly attributed to them. If, therefore, genes work like enzyms, they do not controll reactions, being, on the contrary, controlled by substances and conditions present in the protoplasm. A gene, like en enzym, cannot go into play, in the absence of the substance to which it is specific. Tne genes are considered as having two roles in the organism one preparing the characters attributed to them and other, preparing the medium for the activities of other genes. At the first glance it seems that only the former is specific. But, if we consider that each gene acts only when the appropriated medium is prepared for it, it follows that the medium is as specific to the gene as the gene to the medium. The author concludes from the analysis of the manner in which genes perform their function, that all the genes work at the same time anywhere in the organism, and that every character results from the activities of all the genes. A gene does therefore not await for a given medium because it is always in the appropriated medium. If the substratum in which it opperates changes, its activity changes correspondingly. Genes are permanently at work. It is true that they attend for an adequate medium to develop a certain actvity. But this does not mean that it is resting while the required cellular environment is being prepared. It never rests. While attending for certain conditions, it opperates in the previous enes It passes from medium to medium, from activity to activity, without stopping anywhere. Genetists are acquainted with situations in which the attended results do not appear. To solve these situations they use to make appeal to the interference of other genes (modifiers, suppressors, activators, intensifiers, dilutors, a. s. o.), nothing else doing in this manner than displacing the problem. To make genetcal systems function genetists confer to their hypothetical entities truly miraculous faculties. To affirm as they do w'th so great a simplicity, that a gene produces an anthocyanin, an enzym, a hormone, or the like, is attribute to the gene activities that onlv very complex structures like cells or glands would be capable of producing Genetists try to avoid this difficulty advancing that the gene works in collaboration with all the other genes as well as with the cytoplasm. Of course, such an affirmation merely means that what works at each time is not the gene, but the whole cell. Consequently, if it is the whole cell which is at work in every situation, it follows that the complete set of genes are permanently in activity, their activity changing in accordance with the part of the organism in which they are working. Transplantation experiments carried out between creeper and normal fowl embryos are discussed in order to show that there is ro local gene action, at least in some cases in which genetists use to recognize such an action. The author thinks that the pleiotropism concept should be applied only to the effects and not to the causes. A pleiotropic gene would be one that in a single actuation upon a more primitive structure were capable of producing by means of secondary influences a multiple effect This definition, however, does not preclude localized gene action, only displacing it. But, if genetics goes back to the egg and puts in it the starting point for all events which in course of development finish by producing the visible characters of the organism, this will signify a great progress. From the analysis of the results of the study of the phenocopies the author concludes that agents other than genes being also capaole of determining the same characters as the genes, these entities lose much of their credit as the unique makers of the organism. Insisting about some points already discussed, the author lays once more stress upon the manner in which the genes exercise their activities, emphasizing that the complete set of genes works jointly in collaboration with the other elements of the cell, and that this work changes with development in the different parts of the organism. To defend this point of view the author starts fron the premiss that a nerve cell is different from a muscle cell. Taking this for granted the author continues saying that those cells have been differentiated as systems, that is all their parts have been changed during development. The nucleus of the nerve cell is therefore different from the nucleus of the muscle cell not only in shape, but also in function. Though fundamentally formed by th same parts, these cells differ integrally from one another by the specialization. Without losing anyone of its essenial properties the protoplasm differentiates itself into distinct kinds of cells, as the living beings differentiate into species. The modified cells within the organism are comparable to the modified organisms within the species. A nervo and a muscle cell of the same organism are therefore like two species originated from a common ancestor : integrally distinct. Like the cytoplasm, the nucleus of a nerve cell differs from the one of a muscle cell in all pecularities and accordingly, nerve cell chromosomes are different from muscle cell chromosomes. We cannot understand differentiation of a part only of a cell. The differentiation must be of the whole cell as a system. When a cell in the course of development becomes a nerve cell or a muscle cell , it undoubtedly acquires nerve cell or muscle cell cytoplasm and nucleus respectively. It is not admissible that the cytoplasm has been changed r.lone, the nucleus remaining the same in both kinds of cells. It is therefore legitimate to conclude that nerve ceil ha.s nerve cell chromosomes and muscle cell, muscle cell chromosomes. Consequently, the genes, representing as they do, specific functions of the chromossomes, are different in different sorts of cells. After having discussed the development of the Amphibian egg on the light of modern researches, the author says : We have seen till now that the development of the egg is almost finished and the larva about to become a free-swimming tadepole and, notwithstanding this, the genes have not yet entered with their specific work. If the haed and tail position is determined without the concourse of the genes; if dorso-ventrality and bilaterality of the embryo are not due to specific gene actions; if the unequal division of the blastula cells, the different speed with which the cells multiply in each hemisphere, and the differential repartition of the substances present in the cytoplasm, all this do not depend on genes; if gastrulation, neurulation. division of the embryo body into morphogenetic fields, definitive determination of primordia, and histological differentiation of the organism go on without the specific cooperation of the genes, it is the case of asking to what then the genes serve ? Based on the mechanism of plant galls formation by gall insects and on the manner in which organizers and their products exercise their activities in the developing organism, the author interprets gene action in the following way : The genes alter structures which have been formed without their specific intervention. Working in one substratum whose existence does not depend o nthem, the genes would be capable of modelling in it the particularities which make it characteristic for a given individual. Thus, the tegument of an animal, as a fundamental structure of the organism, is not due to gene action, but the presence or absence of hair, scales, tubercles, spines, the colour or any other particularities of the skin, may be decided by the genes. The organizer decides whether a primordium will be eye or gill. The details of these organs, however, are left to the genetic potentiality of the tissue which received the induction. For instance, Urodele mouth organizer induces Anura presumptive epidermis to develop into mouth. But, this mouth will be farhioned in the Anura manner. Finalizing the author presents his own concept of the genes. The genes are not independent material particles charged with specific activities, but specific functions of the whole chromosome. To say that a given chromosome has n genes means that this chromonome, in different circumstances, may exercise n distinct activities. Thus, under the influence of a leg evocator the chromosome, as whole, develops its "leg" activity, while wbitm the field of influence of an eye evocator it will develop its "eye" activity. Translocations, deficiencies and inversions will transform more or less deeply a whole into another one, This new whole may continue to produce the same activities it had formerly in addition to those wich may have been induced by the grafted fragment, may lose some functions or acquire entirely new properties, that is, properties that none of them had previously The theoretical possibility of the chromosomes acquiring new genetical properties in consequence of an exchange of parts postulated by the present writer has been experimentally confirmed by Dobzhansky, who verified that, when any two Drosophila pseudoobscura II - chromosomes exchange parts, the chossover chromosomes show new "synthetic" genetical effects.
Resumo:
Male-male and male-female interactions, reproductive habitat, and vocalizations of Hyla goiana B. Lutz, 1968 a member of H. polytaenia species group, are described. Three groups of calling males were surveyed along a small stream, at the Estação de Pesquisa e Desenvolvimento Ambiental de Galheiro, Perdizes municipality, State of Minas Gerais, Brazil. The mean distance between the nearest calling neighbors was 2.7 m, in accordance with an uniform distribution. Clutches (mean 180 eggs) were deposited in the stream, submerged and attached to plants. In two observed courtships the female moved towards a calling male that rapidly clasped her. In the male-male interaction, the males emitted advertisement and encounter calls and then engaged in physical combat. The males have a prepollical fang-like spine on each hand and several of them were observed with scratches on dorsum. The advertisement call consists of alternating harsh notes and a trilled of brief notes. The frequency of the call is lower than that of H. aff. polytaenia and H. cipoensis B. Lutz, 1968. The clutch characteristics of H. goiana are similar to those described for H. polytaenia Cope, 1870 and H. cipoensis.
Resumo:
In this paper a new species of the genus Lecithochirium Luehe, 1901, is described. To simplify the study of this genus, we divided it in 3 groups according principally to the relation among the suckers. L. manteri sp. n., comes nearest to L. texanum, L. priacanthi, and L. microstomum, but differes mainly from them by the great size of the suckers, pharynx and eggs.
Resumo:
To identify wild hosts of Trypanosoma cruzi, surveys were conducted in the subandean valleys of Jujuy Province, Argentina, between June 1986 and March 1987. Seventy two mammals from 13 different species were examined by xenodiagnosis. Fifty two of them were mostly roedents trapped at the localities of Maimará, León and Tilcara, and the remainder had been kept in captivity at the Estación Biológica Experimental, in Jujuy. Trypanosoma cruzi infection was detected only in 2 Octodontomys gliroides (2 pos./8 exam. 25%) from all 72 examined mammals. Isolates were called Octodontomys Argentina 1 and 2 (OA1 and OA2). Both infected animals were caught at the archaelogical ruin of Pucará, at Tilcara. Repeated searches for triatomines in the ruin itself and in neighbour houses rendered negative results. Groups of mice inoculated with either OA1 or OA2 isolates became infected between 7 (OA1) to 12 days (OA2) postinoculation PI. Parasitemia peaks were observed between day 12th - 14th PI. Scarce amastigote nests were found in myocardium and skeletal muscle. Mortality was observed only for mice inoculated with OA1. Isoenzyme patterns of OA1 and OA2 were identical to one found in dogs and slightly different from that of human parasites in Argentina. Bones from Octodontomys sp., were recently found in a cave, dated 10200-8600 BC, in Pumamarca, near Tilcara, Jujuy. There are evidences that O. gliroides cohabited with man in ancient times and was associated to the domestic cycle of T. cruzi transmission, playing a role like that of domestic cavies. in Bolivia.
Resumo:
The principal vector of malaria in eastern Venezuela, Anopheles aquasalis, is exophagic and exophilic. Control using indoor insecticide house sprays has failed to lower the number of malaria cases. Therefore, studies were initiated in two villages of the eastern coastal state of Sucre to better understand this vector's biology and develop a more integrated control program. An. aquasalis was found to have a crepuscular biting behavior with a major peak at dusk and a minor peak at dawn. Mosquitos were collected more outdoors than indoors. Forty-seven percent of the biting took place before people went to bed (22:30 hr) and 69% of the mosquitos biting during this time period bite outdoors. Outdoor biting could be the reason why indoor spraying alone did not lower malaria cases. Seasonal abundance was greater in the rainy season compared to the dry season. Seasonal parous rates were high (78.3%-100%) and similar indoors and outdoors and between dry and wet season in Santa F e. In Guayana, the seasonal parity was lower (34.6%-42.2%) than Santa F e with indoor parity slightly higher than outdoors. Malaria cases were higher in Santa F e, but adult mosquito density was much lower than in Guayana. This difference could have been due to higher parity in Santa F e compared to Guayana. The greater distance to the nearest breeding site and presence of alternative hosts in Guayana can not be discounted as factors which contributed to the difference in malaria transmission between locations. We concluded that knowledge on seasonal occurrence, biting activity, resting behavior and breeding site location can be used to design a new control strategy for this vector.
Resumo:
Specimens collected from the large intestine of the sidenecked turtle Podocnemis unifilis Troschel, 1848 in the region of Cuminá and Trombetas rivers near Pará, Brazil are assigned to a new genus and new species of the nematode superfamily Cosmocercoidea and family Atractidae and named Paraorientatractis semiannulata. The new genus is separated from the nearest genus Orientatractis by the funnelshaped mouth opening, the presence of 4 distinct lips, 4 papillae in the internal cycle, one on each lip margin, 2 lateral amphids with large amphidial pores and absence of submedian papillae. It is also separated from Orientatractis and Proatractis by the presence of striated lateral alae which curve dorsally extending from mid oesophagus to mid tail, the difference in size of the vulvar opening and the presence of large transverse ridges or semiannules on the dorsal surface. The new species can be separated from the species of the genera Orientatractis and Proatractis by the characters that distinguish the genera and the arrangement of the caudal papillae on the male. A host/parasite list for Podocnemis spp. is included
Resumo:
Mitochondrial DNA of Biomphalaria tenagophila, a mollusc intermediate host of Schistosoma mansoni in Brazil, was sequenced and characterised. The genome size found for B. tenagophila was 13,722 bp and contained 13 messenger RNAs, 22 transfer RNAs (tRNA) and two ribosomal RNAs (rRNA). In addition to sequencing, the mitochondrial DNA (mtDNA) genome organization of B. tenagophila was analysed based on its content and localization of both coding and non-coding regions, regions of gene overlap and tRNA nucleotide sequences. Sequences of protein, rRNA 12S and rRNA 16S nucleotides as well as gene organization were compared between B. tenagophila and Biomphalaria glabrata, as the latter is the most important S. mansoni intermediate host in Brazil. Differences between such species were observed regarding rRNA composition. The complete sequence of the B. tenagophila mitochondrial genome was deposited in GenBank (accession EF433576). Furthermore, phylogenetic relationships were estimated among 28 mollusc species, which had their complete mitochondrial genome deposited in GenBank, using the neighbour-joining method, maximum parsimony and maximum likelihood bootstrap. B. tenagophila was positioned at a branch close to B. glabrata and Pulmonata molluscs, collectively comprising a paraphyletic group, contrary to Opistobranchia, which was positioned at a single branch and constituted a monophyletic group.
Resumo:
Culex is the largest genus of Culicini and includes vectors of several arboviruses and filarial worms. Many species of Culex are morphologically similar, which makes their identification difficult, particularly when using female specimens. To aid evolutionary studies and species distinction, molecular techniques are often used. Sequences of the second internal transcribed spacer (ITS2) of ribosomal DNA (rDNA) from 16 species of the genus Culex and one of Lutzia were used to assess their genomic variability and to verify their applicability in the phylogenetic analysis of the group. The distance matrix (uncorrected p-distance) that was obtained revealed intragenomic and intraspecific variation. Because of the intragenomic variability, we selected ITS2 copies for use in distance analyses based on their secondary structures. Neighbour-joining topology was obtained with an uncorrected p-distance. Despite the heterogeneity observed, individuals of the same species were grouped together and correlated with the current, morphology-based classification, thereby showing that ITS2 is an appropriate marker to be used in the taxonomy of Culex.
Resumo:
Taking into account the difficulties of taxonomic identification of larval anisakid nematodes based on morphological characters, genetic analyses were performed, together with those usually applied, in order to identify anisakid larvae found in the flounder Paralichthys isosceles from the littoral of the state of Rio de Janeiro, Brazil. The analysis of 1,820 larvae revealed a new species, similar to Hysterothylacium MD, Hysterothylacium 2, Hysterothylacium KB and Hysterothylacium sp regarding the absence of the larval tooth, an excretory pore situated below the nerve ring level, and slender lateral alae. Moreover, the new species differs from Hysterothylacium fortalezae and Hysterothylacium reliquens with regard to the number and size of spines present on the tail end and from Hysterothylacium patagonicus by the absence of interlabia. The maximum parsimony and neighbour joining tree topologies based on the 18S ribosomal DNA gene, complete internal transcribed spacer region and cytochrome oxidase 2 (COII) gene demonstrated that the Brazilian larvae belong to Raphidascarididae and represent a unique genetic entity, confirmed as a new Hysterothylacium species. Furthermore, the new species presents COII genetic signatures and shares polymorphisms with Raphidascarididae members. This is the first description of a new anisakid species from Brazil through the integration of morphological and molecular taxonomy data.
Resumo:
Sequences of the cytochrome c oxidase subunit I (COI) mitochondrial gene from adults of 22 Culex ( Culex ) species from Argentina and Brazil were employed to assess species identification and to test the usefulness of COI for barcoding using the best close match (BCM) algorithm. A pairwise Kimura two-parameter distance matrix including the mean intra and interspecific distances for 71 COI barcode sequences was constructed. Of the 12 COI lineages recovered in the Neighbour-joining topology, five confirmed recognised morphological species ( Cx. acharistus , Cx. chidesteri , Cx. dolosus , Cx. lygrus and Cx. saltanensis ) with intraspecific divergences lower than 1.75%. Cx. bilineatus is formally resurrected from the synonymy of Cx. dolosus . Cx. maxi , Cx. surinamensis and the Coronator group species included were clustered into an unresolved lineage. The intraspecific distance of Cx. pipiens (3%) was almost twice the interspecific between it and Cx. quinquefasciatus (1.6%). Regarding the BCM criteria, the COI barcode successfully identified 69% of all species. The rest of the sequences, approximately 10%, 18% and 3%, remained as ambiguously, mis and unidentified, respectively. The COI barcode does not contain enough information to distinguish Culex ( Cux. ) species.
Resumo:
Chagas disease, caused by Trypanosoma cruzi infection, is a zoonosis of humans, wild and domestic mammals, including dogs. In Panama, the main T. cruzi vector is Rhodnius pallescens, a triatomine bug whose main natural habitat is the royal palm, Attalea butyracea. In this paper, we present results from three T. cruzi serological tests (immunochromatographic dipstick, indirect immunofluorescence and ELISA) performed in 51 dogs from 24 houses in Trinidad de Las Minas, western Panama. We found that nine dogs were seropositive (17.6% prevalence). Dogs were 1.6 times more likely to become T. cruziseropositive with each year of age and 11.6 times if royal palms where present in the peridomiciliary area of the dog’s household or its two nearest neighbours. Mouse-baited-adhesive traps were employed to evaluate 12 peridomestic royal palms. All palms were found infested with R. pallescens with an average of 25.50 triatomines captured per palm. Of 35 adult bugs analysed, 88.6% showed protozoa flagellates in their intestinal contents. In addition, dogs were five times more likely to be infected by the presence of an additional domestic animal species in the dog’s peridomiciliary environment. Our results suggest that interventions focused on royal palms might reduce the exposure to T. cruzi infection.