27 resultados para multivehicle interaction directed-graph model
em Scielo Saúde Pública - SP
Resumo:
A number of glycoconjugates, including glycolipids and glycoproteins, participate in the process of host-cell invasion by Trypanosoma cruzi and one of the most important carbohydrates involved on this interaction is sialic acid. It is known that parasite trans-sialidase participates with sialic acid in a coordinated fashion in the initial stages of invasion. Given the importance of these sialogycoconjugates, this review sets out various possible biological models for the interaction between the parasite and mammalian cells that possess a sialylated receptor/ligand system.
Resumo:
Monocytes/macrophages are important targets for dengue virus (DENV) replication; they induce inflammatory mediators and are sources of viral dissemination in the initial phase of the disease. Apoptosis is an active process of cellular destruction genetically regulated, in which a complex enzymatic pathway is activated and may be trigged by many viral infections. Since the mechanisms of apoptotic induction in DENV-infected target cells are not yet defined, we investigated the virus-cell interaction using a model of primary human monocyte infection with DENV-2 with the aim of identifying apoptotic markers. Cultures analyzed by flow cytometry and confocal microscopy yielded DENV antigen positive cells with rates that peaked at the second day post infection (p.i.), decayed afterwards and produced the apoptosis-related cytokines TNF-α and IL-10. Phosphatidylserine, an early marker for apoptosis, was increased at the cell surface and the Fas death receptor was upregulated at the second day p.i. at significantly higher rates in DENV infected cell cultures than controls. However, no detectable changes were observed in the expression of the anti-apoptotic protein Bcl-2 in infected cultures. Our data support virus modulation of extrinsic apoptotic factors in the in vitro model of human monocyte DENV-2 infection. DENV may be interfering in activation and death mechanisms by inducing apoptosis in target cells.
Resumo:
This work aimed to study the interaction between the model plant Arabidopsis thaliana and Xanthomonas campestris pv. campestris (Xcc), the pathogen responsible for black rot of crucifers. The response of 32 accessions of A. thaliana to the Brazilian isolate of Xcc CNPH 17 was evaluated. No immunity-like response was observed. "CS1308", "CS1566" and "CS1643" grown in continuous light were among the accessions that showed strongest resistance when inoculated with 5 x 10(6) CFU/mL. In contrast, "CS1194" and "CS1492" were among the most susceptible accessions. Similar results were obtained when plants were grown under short-day conditions. To quantify the differences in disease symptoms, total chlorophyll was extracted from contrasting accessions at different time points after inoculation. Chlorophyll levels from controls and Xcc inoculated plants showed a similar reduction in resistant accessions, whereas Xcc-inoculated susceptible accessions showed a greater reduction compared to controls. To test the specificity of resistance, accessions CS1308, CS1566, CS1643 and CS1438 (which showed partial resistance to CNPH 17), were inoculated with a more aggressive isolate of Xcc (CNPH 77) and Ralstonia solanacearum. Among the accessions tested, "CS1566" was the most resistant to Xcc CNPH 77 and also displayed resistance to R. solanacearum. Accessions CS1308, CS1566 and CS1643 were also inoculated with a high titer of Xcc CNPH 17 (5 x 10(8) CFU/mL). No collapse of tissue was observed up to 48 h after inoculation, indicating that a hypersensitive response is not involved in the resistance displayed by these accessions.
Resumo:
The reaction of nine vector species of Chagas' disease to infection by seven different Trypanosoma cruzi strains; Berenice, Y, FL, CL, S. Felipe, Colombiana and Gávea, are examined and compared. On the basis of the insects' ability to establish and maintain the infection, vector species could be divided into two distinct groups which differ in their reaction to an acute infection by T. cruzi. While the proportion of positive bugs was found to be low in Triatoma infestans and Triatoma dimidiata it was high, ranging from 96.9% to 100% in the group of wild (Rhodnius neglectus, Triatoma rubrovaria)and essentially sylvatic vectors in process of adaptation to human dwellings, maintained under control following successful insecticidal elimination of Triatoma infestans (Panstrongylus megistus, Triatoma sordida and Triatoma pseudomaculata). An intermediate position is held by Triatoma brasiliensis and Rhodnius prolixus. This latter has been found to interchange between domestic and sylvatic environments. The most important finding is the strikingly good reaction between each species of the sylvatic bugs and practically all T. cruzi strains herein studied, thus indicating that the factors responsible for the excellent reaction of P.megistus to infection by Y strain, as previously reported also come into operation in the reaction of the same vector species to acute infections by five of the remaining T.cruzi strains. Comparison or data reported by other investigators with those herein described form the basis of the discussion of Dipetalogaster maximus as regards its superiority as a xenodiagnostic agent.
Resumo:
This paper compares the predation pressure that ducks and chickens exert on triatomines. For the tests, these birds were placed in individual boxes together with a known number of Triatoma infestans and left to interact from 6 p.m. till the next morning, involving a long lasting period of complete darkness limited by two short-term periods of semi-darkness. There was a shelter which could prevent the bugs from being predated. The number of live and dead triatomines was recorded, considering missing bugs as predated by the birds. Ducks exhibited a greater predatory activity than chickens, that could be due to a long term active period at night while chickens sleep motionless from sunset to dawn. Surviving triatomines that had fed on chickens outnumbered those fed on ducks suggesting that these were less accessible to the triatomine biting. If ducks are better than chickens to detect and eat bugs and to interfere with their feeding in the field, an increase in duck number might help to diminish triatomine density. Further research is needed to determine the feasibility of application of these experimental results.
Resumo:
The objective of this study was to assess genotype by environment interaction for seed yield per plant in rapeseed cultivars grown in Northern Serbia by the AMMI (additive main effects and multiplicative interaction) model. The study comprised 19 rapeseed genotypes, analyzed in seven years through field trials arranged in a randomized complete block design, with three replicates. Seed yield per plant of the tested cultivars varied from 1.82 to 19.47 g throughout the seven seasons, with an average of 7.41 g. In the variance analysis, 72.49% of the total yield variation was explained by environment, 7.71% by differences between genotypes, and 19.09% by genotype by environment interaction. On the biplot, cultivars with high yield genetic potential had positive correlation with the seasons with optimal growing conditions, while the cultivars with lower yield potential were correlated to the years with unfavorable conditions. Seed yield per plant is highly influenced by environmental factors, which indicates the adaptability of specific genotypes to specific seasons.
Resumo:
On the basis of theoretical B3LYP calculations, Yáñez and co-workers (J. Chem. Theory Comput. 2012, 8, 2293) illustrated that beryllium ions are capable of significantly modulating (changing) the electronic structures of imidazole. In this computational organic chemistry study, the interaction of this β-amino acid and five model Lewis acids (BeF1+, Be2+, AlF2(1+), AlF2+, and Al3+) were investigated. Several aspects were addressed: natural bond orbitals, including second order perturbation analysis of intra-molecular charge delocalization and the natural population analysis atomic charges; molecular geometries; selected infrared stretching frequencies (C-N, C-O, and N-H), and selected ¹H-NMR chemical shifts. The data illustrate that this interaction can weaken the H-O bond and goes beyond strengthening the intra-molecular hydrogen bond (N...H-O) to cause a spontaneous transfer of the proton to the nitrogen atom in five cases generating zwitterion structures. Many new features are observed. Most importantly, the zwitterion structures include a stabilizing hydrogen bond (N-H...O) that varies in relative strength according to the Lewis acid. These findings explain the experimental observations of α-amino acids (for example: J. Am. Chem. Soc. 2001, 123, 3577) and are the first reported fundamental electronic structure characterization of β-amino acids in zwitterion form.
Resumo:
With the purpose of at lowering costs and reendering the demanded information available to users with no access to the internet, service companies have adopted automated interaction technologies in their call centers, which may or may not meet the expectations of users. Based on different areas of knowledge (man-machine interaction, consumer behavior and use of IT) 13 propositions are raised and a research is carried out in three parts: focus group, field study with users and interviews with experts. Eleven automated service characteristics which support the explanation for user satisfaction are listed, a preferences model is proposed and evidence in favor or against each of the 13 propositions is brought in. With balance scorecard concepts, a managerial assessment model is proposed for the use of automated call center technology. In future works, the propositions may become verifiable hypotheses through conclusive empirical research.
Resumo:
Previous studies (1982,1987) have emphasized the superiority of sylvatic vector species over domestic species as xenodiagnostic agents in testing hosts with acute or chronic infections by T. cruzi "Y" stock. The present study, which is unique in that it contains data on both infectivity rates produced by the same stock in 11 different vector species and also the reaction of the same vector species to seven different parasite stocks, establishes the general validity of linking efficiency of xenodiagnosis to the biotope of its agent. For example, infectivity rates produced by "São Felipe" stock varied from 82.5% to 98.3% in sylvatic vectors but decreased to 42.5% to 71.3% in domestic species. "Colombiana" stock produced in the same sylvatic vectors infectivity rates ranging from 12.5% to 45%. These shrank to 5%-22.5% in domestic bugs. The functional role of the biotope in the vector-parasite interaction has not been eluddated. But since this phenomenon has been observed to be stable and easy to reproduce, it leads us to believe that the results obtained are valid. Data presented also provide increasing evidence that the infectivity rates exhibited by bugs from xenodiagnosis in chronic hosts, are parasite stock specific. For example, infectivity rates produced by "Berenice", "Y", "FL" and "CL" varied in R. neglectus from 26.3% to 75%; in P. megistus from 56.3% to 83.8%; in T. sordida from 28.8% to 58.8% in T. pseudomaculata from 41.3% to 66.3% and in T. rubrovaria from 48.8% to 85%. Data from xenodiagnosis in the same hosts, carrying acute infections by the same parasite stocks, gave the five sylvatic vectors a positive rating of approximately 100%, thus suggesting that the heavy loads of parasites circulating in the acute hosts obscured the characteristic interspecific differences for the parasite stock. Nonetheless these latter were revealed in the same hosts with chronic infections stimulated by very low numbers of the same parasite stocks. Certain observations here described lead us to speculate as to the possibility of further results from other parasite stocks, allowing the association of the infectivity rates produced in bugs by different parasite stocks with the isoenzymic patterns revealed by these stocks.
Resumo:
The knowledge about typhoid fever pathogenesis is growing in the last years, mainly about the cellular and molecular phenomena that are responsible by clinical manifestations of this disease. In this article are discussed several recent discoveries, as follows: a) Bacterial type III protein secretion system; b) The five virulence genes of Salmonella spp. that encoding Sips (Salmonella invasion protein) A, B, C, D and E, which are capable of induce apoptosis in macrophages; c) The function of Toll R2 and Toll R4 receptors present in the macrophage surface (discovered in the Drosophila). The Toll family receptors are critical in the signalizing mediated by LPS in macrophages in association with LBP and CD14; d) The lines of immune defense between intestinal lumen and internal organs; e) The fundamental role of the endothelial cells in the inflammatory deviation from bloodstream into infected tissues by bacteria. In addition to above subjects, the authors comment the correlation between the clinical features of typhoid fever and the cellular and molecular phenomena of this disease, as well as the therapeutic consequences of this knowledge.
Resumo:
Megazol, nifurtimox, benznidazol and allopurinol were investigated, by light and electron µscopy, for their action on T. cruzi. Both the direct effect upon amastigote and trypomastigote forms and the effect upon the interaction of heart muscle cells (HMC) with bloodstream trypomastigotes were studied. The proliferation of amastigotes in Warren medium was inhibited in a dose-dependent manner by megazol, nifurtimox and benznidazol. Treatment of amastigotes (25-50 µM/24 h) and trypomastigotes (25 µM/24h) led to several ultrastructural alterations in the parasites. These three drugs also had a potent effect on the treatment of infected heart muscle cells when added at the beginning of the interaction or after one or three days of infection. The interiorized parasites showed a similar pattern of ultrastructural alterations as observed by the direct effect on the amastigotes. The primary heart muscle cell culture proved to be a suitable model for the study of drugs on intracellular parasites. Likewise, the amastigote proliferation in axenic medium was shown to be an adequate assay for an initial trial of drugs. These parameters seem very reliable to us for a systematic investigation of the mechanism of action of new drugs.
Resumo:
In order to upgrade the reliability of xenodiagnosis, attention has been directed towards population dynamics of the parasite, with particular interest for the following factors: 1. Parasite density which by itself is not a research objective, but by giving an accurate portrayal of parasite development and multiplication, has been incorporated in screening of bugs for xenodiagnosis. 2. On the assumption that food availability might increase parasite density, bugs from xenodiagnosis have been refed at biweekly intervals on chicken blood. 3. Infectivity rates and positives harbouring large parasite yields were based on gut infections, in which the parasite population comprised of all developmental forms was more abundant and easier to detect than in fecal infections, thus minimizing the probability of recording false negatives. 4. Since parasite density, low in the first 15 days of infection, increases rapidly in the following 30 days, the interval of 45 days has been adopted for routine examination of bugs from xenodiagnosis. By following the enumerated measures, all aiming to reduce false negative cases, we are getting closer to a reliable xenodiagnostic procedure. Upgrading the efficacy of xenodiagnosis is also dependent on the xenodiagnostic agent. Of 9 investigated vector species, Panstrongylus megistus deserves top priority as a xenodiagnostic agent. Its extraordinary capability to support fast development and vigorous multiplication of the few parasites, ingested from the host with chronic Chagas' disease, has been revealed by the strikingly close infectivity rates of 91.2% vs. 96.4% among bugs engorged from the same host in the chronic and acute phase of the disease respectively (Table V), the latter comporting an estimated number of 12.3 x 10[raised to the power of 3] parasites in the circulation at the time of xenodiagnosis, as reported previously by the authors (1982).
Resumo:
Biomphalaria tenagophila is very important for schistosomiasis transmission in Brazil. However its mechanisms of interaction with Schistosoma mansoni are still scantly studied. Since this snail displays strains highly susceptible or completely resistant to the parasite infection, the knowledge of that would be a useful tool to understand the mechanism of snail resistance. Particularly, the Taim strain consistently shows absolute resistance against the trematode, and this resistance is a dominant character. A multidisciplinary research group was created aiming at studying B. tenagophila/S. mansoni interaction. The possibility for applying the knowledge acquired to obtain a biological model for the control of S. mansoni transmission in endemic areas is discussed.
Resumo:
Infection by the protozoan parasite Toxoplasma gondii is widely prevalent in humans and animals. To prevent human infection, all meat should be well cooked before consumption, since the parasite is present in skeletal muscle. In this context, the use of skeletal muscle cells (SkMCs) as a cellular model opens up new approaches to investigate T. gondii-host cell interactions. Immunofluorescent detection of proteins that are stage-specific for bradyzoites indicated that complete cystogenesis of T. gondii in in vitro cultures of SkMCs occurs after 96 h of infection. Ultrastructural analysis showed that, after 48 h of interaction, there were alterations on the parasitophorous vacuole membrane, including greater thickness and increased electron density at the inner face of the membrane. The present study demonstrates the potential use of primary cultures of SkMCs to evaluate different molecular aspects of T. gondii invasion and cystogenesis and presents a promising in vitro model for the screening of drug activities toward tissue cysts and bradyzoites.
Resumo:
The primary culture of intestinal epithelial cells from domestic cats is an efficient cellular model to study the enteric cycle of Toxoplasma gondii in a definitive host. The parasite-host cell ratio can be pointed out as a decisive factor that determines the intracellular fate of bradyzoites forms. The development of the syncytial-like forms of T. gondii was observed using the 1:20 bradyzoite-host cell ratio, resulting in similar forms described in in vivo systems. This alternative study potentially opens up the field for investigation into the molecular aspects of this interaction. This can contribute to the development of new strategies for intervention of a main route by which toxoplasmosis spreads.