22 resultados para multi-objective models
em Scielo Saúde Pública - SP
Resumo:
The industrialization of passion fruit in the form of juice produces considerable amounts of residue that could be used as food. The objective of the present study was to determine the effects of the volume of passion fruit juice added to the syrup and the cooking time on the color and texture of passion fruit albedo preserved in syrup. Multi-linear models were well fit to describe the value for a* (for the albedo) the values for b* (for the albedo and syrup), which exhibited high correlation coefficients of 98%, 84%, and 88%, respectively. The volume of passion fruit juice added and the cooking time of the albedos in the syrup, involved in the processing of passion fruit albedo preserves in syrup, significantly affected color analyses. The texture was not affected by the parameters studied. Therefore, the use of larger volumes of passion fruit juice and longer cooking time is recommended for the production of passion fruit albedo preserves in syrup to achieve the characteristic yellow color of the fruit.
Resumo:
Theory building is one of the most crucial challenges faced by basic, clinical and population research, which form the scientific foundations of health practices in contemporary societies. The objective of the study is to propose a Unified Theory of Health-Disease as a conceptual tool for modeling health-disease-care in the light of complexity approaches. With this aim, the epistemological basis of theoretical work in the health field and concepts related to complexity theory as concerned to health problems are discussed. Secondly, the concepts of model-object, multi-planes of occurrence, modes of health and disease-illness-sickness complex are introduced and integrated into a unified theoretical framework. Finally, in the light of recent epistemological developments, the concept of Health-Disease-Care Integrals is updated as a complex reference object fit for modeling health-related processes and phenomena.
Resumo:
INTRODUCTION: Malaria is a serious problem in the Brazilian Amazon region, and the detection of possible risk factors could be of great interest for public health authorities. The objective of this article was to investigate the association between environmental variables and the yearly registers of malaria in the Amazon region using Bayesian spatiotemporal methods. METHODS: We used Poisson spatiotemporal regression models to analyze the Brazilian Amazon forest malaria count for the period from 1999 to 2008. In this study, we included some covariates that could be important in the yearly prediction of malaria, such as deforestation rate. We obtained the inferences using a Bayesian approach and Markov Chain Monte Carlo (MCMC) methods to simulate samples for the joint posterior distribution of interest. The discrimination of different models was also discussed. RESULTS: The model proposed here suggests that deforestation rate, the number of inhabitants per km², and the human development index (HDI) are important in the prediction of malaria cases. CONCLUSIONS: It is possible to conclude that human development, population growth, deforestation, and their associated ecological alterations are conducive to increasing malaria risk. We conclude that the use of Poisson regression models that capture the spatial and temporal effects under the Bayesian paradigm is a good strategy for modeling malaria counts.
Resumo:
Given the limitations of different types of remote sensing images, automated land-cover classifications of the Amazon várzea may yield poor accuracy indexes. One way to improve accuracy is through the combination of images from different sensors, by either image fusion or multi-sensor classifications. Therefore, the objective of this study was to determine which classification method is more efficient in improving land cover classification accuracies for the Amazon várzea and similar wetland environments - (a) synthetically fused optical and SAR images or (b) multi-sensor classification of paired SAR and optical images. Land cover classifications based on images from a single sensor (Landsat TM or Radarsat-2) are compared with multi-sensor and image fusion classifications. Object-based image analyses (OBIA) and the J.48 data-mining algorithm were used for automated classification, and classification accuracies were assessed using the kappa index of agreement and the recently proposed allocation and quantity disagreement measures. Overall, optical-based classifications had better accuracy than SAR-based classifications. Once both datasets were combined using the multi-sensor approach, there was a 2% decrease in allocation disagreement, as the method was able to overcome part of the limitations present in both images. Accuracy decreased when image fusion methods were used, however. We therefore concluded that the multi-sensor classification method is more appropriate for classifying land cover in the Amazon várzea.
Resumo:
AbstractBackground:30-40% of cardiac resynchronization therapy cases do not achieve favorable outcomes.Objective:This study aimed to develop predictive models for the combined endpoint of cardiac death and transplantation (Tx) at different stages of cardiac resynchronization therapy (CRT).Methods:Prospective observational study of 116 patients aged 64.8 ± 11.1 years, 68.1% of whom had functional class (FC) III and 31.9% had ambulatory class IV. Clinical, electrocardiographic and echocardiographic variables were assessed by using Cox regression and Kaplan-Meier curves.Results:The cardiac mortality/Tx rate was 16.3% during the follow-up period of 34.0 ± 17.9 months. Prior to implantation, right ventricular dysfunction (RVD), ejection fraction < 25% and use of high doses of diuretics (HDD) increased the risk of cardiac death and Tx by 3.9-, 4.8-, and 5.9-fold, respectively. In the first year after CRT, RVD, HDD and hospitalization due to congestive heart failure increased the risk of death at hazard ratios of 3.5, 5.3, and 12.5, respectively. In the second year after CRT, RVD and FC III/IV were significant risk factors of mortality in the multivariate Cox model. The accuracy rates of the models were 84.6% at preimplantation, 93% in the first year after CRT, and 90.5% in the second year after CRT. The models were validated by bootstrapping.Conclusion:We developed predictive models of cardiac death and Tx at different stages of CRT based on the analysis of simple and easily obtainable clinical and echocardiographic variables. The models showed good accuracy and adjustment, were validated internally, and are useful in the selection, monitoring and counseling of patients indicated for CRT.
Resumo:
Social businesses present a new paradigm to capitalism, in which private companies, non-profit organizations and civil society create a new type of business with the main objective of solving social problems with financial sustainability and efficiency through market mechanisms. As any new phenomenon, different authors conceptualize social businesses with distinct views. This article aims to present and characterize three different perspectives of social business definitions: the European, the American and that of the emerging countries. Each one of these views was illustrated by a different Brazilian case. We conclude with the idea that all the cases have similar characteristics, but also relevant differences that are more than merely geographical. The perspectives analyzed in this paper provide an analytical framework for understanding the field of social businesses. Moreover, the cases demonstrate that in the Brazilian context the field of social business is under construction and that as such it draws on different conceptual influences to deal with a complex and challenging reality.
Resumo:
Theories on social capital and on social entrepreneurship have mainly highlighted the attitude of social capital to generate enterprises and to foster good relations between third sector organizations and the public sector. This paper considers the social capital in a specific third sector enterprise; here, multi-stakeholder social cooperatives are seen, at the same time, as social capital results, creators and incubators. In the particular enterprises that identify themselves as community social enterprises, social capital, both as organizational and relational capital, is fundamental: SCEs arise from but also produce and disseminate social capital. This paper aims to improve the building of relational social capital and the refining of helpful relations drawn from other arenas, where they were created and from where they are sometimes transferred to other realities, where their role is carried on further (often working in non-profit, horizontally and vertically arranged groups, where they share resources and relations). To represent this perspective, we use a qualitative system dynamic approach in which social capital is measured using proxies. Cooperation of volunteers, customers, community leaders and third sector local organizations is fundamental to establish trust relations between public local authorities and cooperatives. These relations help the latter to maintain long-term contracts with local authorities as providers of social services and enable them to add innovation to their services, by developing experiences and management models and maintaining an interchange with civil servants regarding these matters. The long-term relations and the organizational relations linking SCEs and public organizations help to create and to renovate social capital. Thus, multi-stakeholder cooperatives originated via social capital developed in third sector organizations produce new social capital within the cooperatives themselves and between different cooperatives (entrepreneurial components of the third sector) and the public sector. In their entrepreneurial life, cooperatives have to contrast the "working drift," as a result of which only workers remain as members of the cooperative, while other stakeholders leave the organization. Those who are not workers in the cooperative are (stake)holders with "weak ties," who are nevertheless fundamental in making a worker's cooperative an authentic social multi-stakeholders cooperative. To maintain multi-stakeholder governance and the relations with third sector and civil society, social cooperatives have to reinforce participation and dialogue with civil society through ongoing efforts to include people that provide social proposals. We try to represent these processes in a system dynamic model applied to local cooperatives, measuring the social capital created by the social cooperative through proxies, such as number of volunteers and strong cooperation with public institutions. Using a reverse-engineering approach, we can individuate the determinants of the creation of social capital and thereby give support to governance that creates social capital.
Resumo:
Objective: This research presents the construction of an attributional questionnaire concerning the different parental models and factors that are involved in family interactions. Method: A mixed methodology was used as a foundation to develop items and respective pilots that allowed checking the validity and internal consistency of the instrument using expert judgment. Results: An instrument of 36 statements was organized into 12 categories to explore the parental models according to the following factors: parental models, breeding patterns, attachment bonds and guidelines for success, and promoted inside family contexts. Analyzing these factors contributes to the children’s development within the familiar frown, and the opportunity for socio-educational intervention. Conclusion: It is assumed that the family context is as decisive as the school context; therefore, exploring the nature of parental models is required to understand the features and influences that contribute to the development of young people in any social context.
Resumo:
OBJECTIVE To compare the health assistance models of Basic Traditional Units (UBS) with the Family Health Strategy (ESF) units for presence and extent of attributes of Primary Health Care (APS), specifically in the care of children. METHOD A cross-sectional study of a quantitative approach with families of children attended by the Public Health Service of Colombo, Paraná. The Primary Care Assessment Tool (PCA-Tool) was applied to parents of 482 children, 235 ESF units and 247 UBS units covering all primary care units of the municipality, between June and July 2012. The results were analyzed according to the PCA-Tool manual. RESULTS ESF units reached a borderline overall score for primary health care standards. However, they fared better in their attributes of Affiliation, Integration of care coordination, Comprehensiveness, Family Centeredness and Accessibility of use, while the attributes of Community Guidance/Orientation, Coordination of Information Systems, Longitudinality and Access attributes were rated as insufficient for APS. UBS units had low scores on all attributes. CONCLUSION The ESF units are closer to the principles of APS (Primary Health Care), but there is need to review actions of child care aimed at the attributes of APS in both care models, corroborating similar studies from other regions of Brazil.
Resumo:
Is it possible to build predictive models (PMs) of soil particle-size distribution (psd) in a region with complex geology and a young and unstable land-surface? The main objective of this study was to answer this question. A set of 339 soil samples from a small slope catchment in Southern Brazil was used to build PMs of psd in the surface soil layer. Multiple linear regression models were constructed using terrain attributes (elevation, slope, catchment area, convergence index, and topographic wetness index). The PMs explained more than half of the data variance. This performance is similar to (or even better than) that of the conventional soil mapping approach. For some size fractions, the PM performance can reach 70 %. Largest uncertainties were observed in geologically more complex areas. Therefore, significant improvements in the predictions can only be achieved if accurate geological data is made available. Meanwhile, PMs built on terrain attributes are efficient in predicting the particle-size distribution (psd) of soils in regions of complex geology.
Resumo:
The objective of this work was to develop neural network models of backpropagation type to estimate solar radiation based on extraterrestrial radiation data, daily temperature range, precipitation, cloudiness and relative sunshine duration. Data from Córdoba, Argentina, were used for development and validation. The behaviour and adjustment between values observed and estimates obtained by neural networks for different combinations of input were assessed. These estimations showed root mean square error between 3.15 and 3.88 MJ m-2 d-1 . The latter corresponds to the model that calculates radiation using only precipitation and daily temperature range. In all models, results show good adjustment to seasonal solar radiation. These results allow inferring the adequate performance and pertinence of this methodology to estimate complex phenomena, such as solar radiation.
Resumo:
The objective of this work was to assess the degree of multicollinearity and to identify the variables involved in linear dependence relations in additive-dominant models. Data of birth weight (n=141,567), yearling weight (n=58,124), and scrotal circumference (n=20,371) of Montana Tropical composite cattle were used. Diagnosis of multicollinearity was based on the variance inflation factor (VIF) and on the evaluation of the condition indexes and eigenvalues from the correlation matrix among explanatory variables. The first model studied (RM) included the fixed effect of dam age class at calving and the covariates associated to the direct and maternal additive and non-additive effects. The second model (R) included all the effects of the RM model except the maternal additive effects. Multicollinearity was detected in both models for all traits considered, with VIF values of 1.03 - 70.20 for RM and 1.03 - 60.70 for R. Collinearity increased with the increase of variables in the model and the decrease in the number of observations, and it was classified as weak, with condition index values between 10.00 and 26.77. In general, the variables associated with additive and non-additive effects were involved in multicollinearity, partially due to the natural connection between these covariables as fractions of the biological types in breed composition.
Resumo:
The objective of this work was to compare random regression models for the estimation of genetic parameters for Guzerat milk production, using orthogonal Legendre polynomials. Records (20,524) of test-day milk yield (TDMY) from 2,816 first-lactation Guzerat cows were used. TDMY grouped into 10-monthly classes were analyzed for additive genetic effect and for environmental and residual permanent effects (random effects), whereas the contemporary group, calving age (linear and quadratic effects) and mean lactation curve were analized as fixed effects. Trajectories for the additive genetic and permanent environmental effects were modeled by means of a covariance function employing orthogonal Legendre polynomials ranging from the second to the fifth order. Residual variances were considered in one, four, six, or ten variance classes. The best model had six residual variance classes. The heritability estimates for the TDMY records varied from 0.19 to 0.32. The random regression model that used a second-order Legendre polynomial for the additive genetic effect, and a fifth-order polynomial for the permanent environmental effect is adequate for comparison by the main employed criteria. The model with a second-order Legendre polynomial for the additive genetic effect, and that with a fourth-order for the permanent environmental effect could also be employed in these analyses.
Resumo:
The objective of this work was to select semivariogram models to estimate the population density of fig fly (Zaprionus indianus; Diptera: Drosophilidae) throughout the year, using ordinary kriging. Nineteen monitoring sites were demarcated in an area of 8,200 m2, cropped with six fruit tree species: persimmon, citrus, fig, guava, apple, and peach. During a 24 month period, 106 weekly evaluations were done in these sites. The average number of adult fig flies captured weekly per trap, during each month, was subjected to the circular, spherical, pentaspherical, exponential, Gaussian, rational quadratic, hole effect, K-Bessel, J-Bessel, and stable semivariogram models, using ordinary kriging interpolation. The models with the best fit were selected by cross-validation. Each data set (months) has a particular spatial dependence structure, which makes it necessary to define specific models of semivariograms in order to enhance the adjustment to the experimental semivariogram. Therefore, it was not possible to determine a standard semivariogram model; instead, six theoretical models were selected: circular, Gaussian, hole effect, K-Bessel, J-Bessel, and stable.
Resumo:
The objective of this work was to develop, validate, and compare 190 artificial intelligence-based models for predicting the body mass of chicks from 2 to 21 days of age subjected to different duration and intensities of thermal challenge. The experiment was conducted inside four climate-controlled wind tunnels using 210 chicks. A database containing 840 datasets (from 2 to 21-day-old chicks) - with the variables dry-bulb air temperature, duration of thermal stress (days), chick age (days), and the daily body mass of chicks - was used for network training, validation, and tests of models based on artificial neural networks (ANNs) and neuro-fuzzy networks (NFNs). The ANNs were most accurate in predicting the body mass of chicks from 2 to 21 days of age after they were subjected to the input variables, and they showed an R² of 0.9993 and a standard error of 4.62 g. The ANNs enable the simulation of different scenarios, which can assist in managerial decision-making, and they can be embedded in the heating control systems.