19 resultados para microRNAs (miRNAs)
em Scielo Saúde Pública - SP
Resumo:
MicroRNAs (miRNAs) são um grupo recém-descoberto de pequenos RNAs, não codificantes, que representam uma das áreas mais estimulantes da ciência médica moderna por modularem uma enorme e complexa rede regulatória da expressão dos genes.Recentemente, linhas de evidências sugerem que os miRNAs desempenham um papel crucial na patogênese da insuficiência cardíaca. Alguns miRNAs altamente expressos no coração como o miR-1, miR-133 e miR-208 estão fortemente associados ao desenvolvimento da hipertrofia cardíaca, enquanto o exato papel de miR-21 no sistema cardiovascular permanece controverso. Os níveis séricos de miRNAs circulantes como o miR-423-5p estão sendo avaliados como potenciais biomarcadores no diagnóstico e prognóstico da insuficiência cardíaca.Por outro lado, a manipulação dos níveis de miRNAs usando técnicas como os mimetizadores de miRNAs (miRmimics) e miRNAs antagônicos(antagomiRs) está tornando cada vez mais evidente o enorme potencial dos miRNAs como promissoras estratégias terapêutica sna insuficiência cardíaca.
Resumo:
Angiostrongylus cantonensis is an important causative agent of eosinophilic meningitis and eosinophilic meningoencephalitis in humans. MicroRNAs (miRNAs) are small non-coding RNAs that participate in a wide range of biological processes. This study employed a deep-sequencing approach to study miRNAs from young adults of A. cantonensis. Based on 16,880,456 high-quality reads, 252 conserved mature miRNAs including 10 antisense miRNAs that belonging to 90 families, together with 10 antisense miRNAs were identified and characterised. Among these sequences, 53 miRNAs from 25 families displayed 50 or more reads. The conserved miRNA families were divided into four groups according to their phylogenetic distribution and a total of nine families without any members showing homology to other nematodes or adult worms were identified. Stem-loop real-time polymerase chain reaction analysis of aca-miR-1-1 and aca-miR-71-1 demonstrated that their level of expression increased dramatically from infective larvae to young adults and then decreased in adult worms, with the male worms exhibiting significantly higher levels of expression than female worms. These findings provide information related to the regulation of gene expression during the growth, development and pathogenesis of young adults of A. cantonensis.
Resumo:
The retrovirus human T lymphotropic virus type 1 (HTLV-1) promotes spastic paraparesis, adult T cell leukaemia and other diseases. Recently, some human microRNAs (miRNAs) have been described as important factors in host-virus interactions. This study compared miRNA expression in control individuals, asymptomatic HTLV-1 carriers and HTLV-1 associated myelopathy (HAM)/tropical spastic paraparesis patients. The proviral load and Tax protein expression were measured in order to characterize the patients. hsa-miR-125b expression was significantly higher in patients than in controls (p = 0.0285) or in the HAM group (p = 0.0312). Therefore, our findings suggest that miR-125b expression can be used to elucidate the mechanisms of viral replication and pathogenic processes.
Resumo:
Chagas disease, which is caused by the intracellular protozoanTrypanosoma cruzi, is a serious health problem in Latin America. The heart is one of the major organs affected by this parasitic infection. The pathogenesis of tissue remodelling, particularly regarding cardiomyocyte behaviour after parasite infection, and the molecular mechanisms that occur immediately following parasite entry into host cells are not yet completely understood. Previous studies have reported that the establishment of parasitism is connected to the activation of the phosphatidylinositol-3 kinase (PI3K), which controls important steps in cellular metabolism by regulating the production of the second messenger phosphatidylinositol-3,4,5-trisphosphate. Particularly, the tumour suppressor PTEN is a negative regulator of PI3K signalling. However, mechanistic details of the modulatory activity of PTEN on Chagas disease have not been elucidated. To address this question, H9c2 cells were infected with T. cruzi Berenice 62 strain and the expression of a specific set of microRNAs (miRNAs) were investigated. Our cellular model demonstrated that miRNA-190b is correlated to the decrease of cellular viability rates by negatively modulating PTEN protein expression in T. cruzi-infected cells.
Resumo:
MicroRNAs (miRNAs) are a class of small endogenous RNAs that play important regulatory roles by targeting mRNAs for cleavage or translational repression. miRNAs act in diverse biological processes including development, cell growth, apoptosis, and hematopoiesis, suggesting their association with cancer. We determined the miRNA expression profile of chronic and acute lymphocytic leukemias (CLL and ALL) using the TaqMan® MicroRNA Assays Human Panel (Applied Biosystems). Pooled leukemia samples were compared to pooled CD19+ samples from healthy individuals (calibrator) by the 2-DDCt method. Total RNA input was normalized based on the Ct values obtained for hsa-miR-30b. The five most highly expressed miRNAs were miR-128b, miR-204, miR-218, miR-331, and miR-181b-1 in ALL, and miR-331, miR-29a, miR-195, miR-34a, and miR-29c in CLL. To our knowledge, this is the first report associating miR-128b, miR-204 and miR-331 to hematological malignancies. The miR-17-92 cluster was also found to be up-regulated in ALL, as previously reported for some types of lymphomas. The differences observed in gene expression levels were validated for miR-331 and miR-128b in ALL and CD19+ samples. These miRNAs were up-regulated in ALL, in agreement with our initial results. A brief target analysis was performed for miR-331. One of its putative targets, SOCS1, promotes STAT activation, which is a known mediator of cell proliferation and survival, suggesting the possibility of an association between miR-331 and these processes. This initial screening provided information on miRNA differentially expressed in normal and malignant B-cells that could suggest the potential roles of these miRNAs in hematopoiesis and leukemogenesis.
Resumo:
MicroRNAs (miRNAs) have gradually been recognized as regulators of embryonic development; however, relatively few miRNAs have been identified that regulate cardiac development. A series of recent papers have established an essential role for the miRNA-17-92 (miR-17-92) cluster of miRNAs in the development of the heart. Previous research has shown that the Friend of Gata-2 (FOG-2) is critical for cardiac development. To investigate the possibility that the miR-17-92 cluster regulates FOG-2 expression and inhibits proliferation in mouse embryonic cardiomyocytes we initially used bioinformatics to analyze 3’ untranslated regions (3’UTR) of FOG-2 to predict the potential of miR-17-92 to target it. We used luciferase assays to demonstrate that miR-17-5p and miR-20a of miR-17-92 interact with the predicted target sites in the 3’UTR of FOG-2. Furthermore, RT-PCR and Western blot were used to demonstrate the post-transcriptional regulation of FOG-2 by miR-17-92 in embryonic cardiomyocytes from E12.5-day pregnant C57BL/6J mice. Finally, EdU cell assays together with the FOG-2 rescue strategy were employed to evaluate the effect of proliferation on embryonic cardiomyocytes. We first found that the miR-17-5p and miR-20a of miR-17-92 directly target the 3’UTR of FOG-2 and post-transcriptionally repress the expression of FOG-2. Moreover, our findings demonstrated that over-expression of miR-17-92 may inhibit cell proliferation via post-transcriptional repression of FOG-2 in embryonic cardiomyocytes. These results indicate that the miR-17-92 cluster regulates the expression of FOG-2 protein and suggest that the miR-17-92 cluster might play an important role in heart development.
Resumo:
Circulating microRNAs (miRNAs) may represent a potential noninvasive molecular biomarker for various pathological conditions. Moreover, the detection of circulating miRNAs can provide important novel disease-related information. In particular, inflammation-associated miR-155 and endothelial-enriched miR-126 are reported to be associated with vascular homeostasis. Vascular damage is a common event described in end-stage renal disease (ESRD). We hypothesized that miR-155 and miR-126 may be detectable in the circulation and serve as potential biomarkers for risk stratification. In this study, we assessed miR-155 and miR-126 in the plasma of 30 ESRD patients and 20 healthy controls using real-time quantification RT-PCR. The circulating levels of miR-155 and miR-126 were significantly reduced in patients with ESRD compared to healthy controls. However, there was no significant difference of circulating miR-155 and miR-126 levels between prehemodialysis and posthemodialysis patients. Furthermore, both circulating miR-126 and miR-155 correlated positively with estimated glomerular filtration rate (miR-126: r = 0.383, P = 0.037; miR-155: r = 0.494, P = 0.006) and hemoglobin (miR-126: r = 0.515, P = 0.004; miR-155: r = 0.598, P < 0.001) and correlated inversely with phosphate level (miR-126: r = -0.675, P < 0.001; miR-155: r = -0.399, P = 0.029). Pearson’s correlation was used to compare circulating levels of miRNAs with clinical parameters. These results suggested that circulating miR-155 and miR-126 might be involved in the development of ESRD. Further studies are needed to demonstrate the role of circulating miR-155 and miR-126 as candidate biomarkers for risk estimation.
Resumo:
MicroRNAs (miRNAs) are small RNA molecules that modulate gene expression implicated in cancer, which play crucial roles in diverse biological processes, such as development, differentiation, apoptosis, and proliferation. The aim of this study was to investigate whether miR-30c mediated the resistance of breast cancer cells to the chemotherapeutic agent doxorubicin (ADR) by targeting tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein zeta (YWHAZ). miR-30c was downregulated in the doxorubicin-resistant human breast cancer cell lines MCF-7/ADR and MDA-MB-231/ADR compared with their parental MCF-7 and MDA-MB-231 cell lines, respectively. Furthermore, we observed that transfection of an miR-30c mimic significantly suppressed the ability of MCF-7/ADR to resist doxorubicin. Moreover, the anti-apoptotic gene YWHAZ was confirmed as a target of miR-30c by luciferase reporter assay, and further studies indicated that the mechanism for miR-30c on the sensitivity of breast cancer cells involved YWHAZ and its downstream p38 mitogen-activated protein kinase (p38MAPK) pathway. Together, our findings provided evidence that miR-30c was one of the important miRNAs in doxorubicin resistance by regulating YWHAZ in the breast cancer cell line MCF-7/ADR.
Resumo:
Hypertrophy is a major predictor of progressive heart disease and has an adverse prognosis. MicroRNAs (miRNAs) that accumulate during the course of cardiac hypertrophy may participate in the process. However, the nature of any interaction between a hypertrophy-specific signaling pathway and aberrant expression of miRNAs remains unclear. In this study, Spague Dawley male rats were treated with transverse aortic constriction (TAC) surgery to mimic pathological hypertrophy. Hearts were isolated from TAC and sham operated rats (n=5 for each group at 5, 10, 15, and 20 days after surgery) for miRNA microarray assay. The miRNAs dysexpressed during hypertrophy were further analyzed using a combination of bioinformatics algorithms in order to predict possible targets. Increased expression of the target genes identified in diverse signaling pathways was also analyzed. Two sets of miRNAs were identified, showing different expression patterns during hypertrophy. Bioinformatics analysis suggested the miRNAs may regulate multiple hypertrophy-specific signaling pathways by targeting the member genes and the interaction of miRNA and mRNA might form a network that leads to cardiac hypertrophy. In addition, the multifold changes in several miRNAs suggested that upregulation of rno-miR-331*, rno-miR-3596b, rno-miR-3557-5p and downregulation of rno-miR-10a, miR-221, miR-190, miR-451 could be seen as biomarkers of prognosis in clinical therapy of heart failure. This study described, for the first time, a potential mechanism of cardiac hypertrophy involving multiple signaling pathways that control up- and downregulation of miRNAs. It represents a first step in the systematic discovery of miRNA function in cardiovascular hypertrophy.
Resumo:
MicroRNAs (miRNAs) may be important mediators of the profound molecular and cellular changes that occur after traumatic brain injury (TBI). However, the changes and possible roles of miRNAs induced by voluntary exercise prior to TBI are still not known. In this report, the microarray method was used to demonstrate alterations in miRNA expression levels in the cerebral cortex of TBI mice that were pretrained on a running wheel (RW). Voluntary RW exercise prior to TBI: i) significantly decreased the mortality rate and improved the recovery of the righting reflex in TBI mice, and ii) differentially changed the levels of several miRNAs, upregulating some and downregulating others. Furthermore, we revealed global upregulation of miR-21, miR-92a, and miR-874 and downregulation of miR-138, let-7c, and miR-124 expression among the sham-non-runner, TBI-non-runner, and TBI-runner groups. Quantitative reverse transcription polymerase chain reaction data (RT-qPCR) indicated good consistency with the microarray results. Our microarray-based analysis of miRNA expression in mice cerebral cortex after TBI revealed that some miRNAs such as miR-21, miR-92a, miR-874, miR-138, let-7c, and miR-124 could be involved in the prevention and protection afforded by voluntary exercise in a TBI model.
Resumo:
Embora recentemente tenha sido questionado o impacto do exercício na sobrevida de pacientes com insuficiência cardíaca, o treinamento físico melhora a qualidade de vida, a capacidade funcional, a inflamação, a função autonômica e a função endotelial. Nos últimos anos, vem crescendo o interesse em um grupo de pequenos RNAs não codificadores de proteína chamados microRNAs. Estudos têm demonstrado que a expressão dessas moléculas se modifica em diversas condições patológicas, como a hipertrofia miocárdica, a isquemia miocárdica e a insuficiência cardíaca, e, quando ocorre melhora clínica, elas parecem se normalizar. Com o potencial de aplicabilidade prática, já foram identificados marcadores que poderão ser úteis na avaliação diagnóstica e prognóstica da insuficiência cardíaca, como o miR-423-5p. Além disso, resultados de estudos experimentais indicam haver possíveis efeitos terapêuticos dos microRNAs. Implicados na regulação da expressão genética durante o desenvolvimento fetal e no indivíduo adulto, os microRNAs aumentam ou diminuem no coração em resposta a estresse fisiológico, injúria ou sobrecarga hemodinâmica. Assim, o estudo do comportamento dessas moléculas no exercício físico vem trazendo informações importantes quanto aos efeitos dessa modalidade terapêutica e representa uma nova era no entendimento da insuficiência cardíaca. Esta revisão tem por objetivo integrar as evidências sobre microRNAs na insuficiência cardíaca com maior relevância no estudo do exercício físico.
Resumo:
Background: Nitric oxide (NO) has been largely associated with cardiovascular protection through improvement of endothelial function. Recently, new evidence about modulation of NO release by microRNAs (miRs) has been reported, which could be involved with statin-dependent pleiotropic effects, including anti-inflammatory properties related to vascular endothelium function. Objective: To evaluate the effects of cholesterol-lowering drugs including the inhibitors of cholesterol synthesis, atorvastatin and simvastatin, and the inhibitor of cholesterol absorption ezetimibe on NO release, NOS3 mRNA expression and miRs potentially involved in NO bioavailability. Methods: Human umbilical vein endothelial cells (HUVEC) were exposed to atorvastatin, simvastatin or ezetimibe (0 to 5.0 μM). Cells were submitted to total RNA extraction and relative quantification of NOS3 mRNA and miRs -221, -222 and -1303 by qPCR. NO release was measured in supernatants by ozone-chemiluminescence. Results: Both statins increased NO levels and NOS3 mRNA expression but no influence was observed for ezetimibe treatment. Atorvastatin, simvastatin and ezetimibe down-regulated the expression of miR-221, whereas miR-222 was reduced only after the atorvastatin treatment. The magnitude of the reduction of miR-221 and miR-222 after treatment with statins correlated with the increment in NOS3 mRNA levels. No influence was observed on the miR-1303 expression after treatments. Conclusion: NO release in endothelial cells is increased by statins but not by the inhibitor of cholesterol absorption, ezetimibe. Our results provide new evidence about the participation of regulatory miRs 221/222 on NO release induction mediated by statins. Although ezetimibe did not modulate NO levels, the down-regulation of miR-221 could involve potential effects on endothelial function.
Resumo:
Among the molecular, biochemical and cellular processes that orchestrate the development of the different phenotypes of cardiac hypertrophy in response to physiological stimuli or pathological insults, the specific contribution of exercise training has recently become appreciated. Physiological cardiac hypertrophy involves complex cardiac remodeling that occurs as an adaptive response to static or dynamic chronic exercise, but the stimuli and molecular mechanisms underlying transduction of the hemodynamic overload into myocardial growth are poorly understood. This review summarizes the physiological stimuli that induce concentric and eccentric physiological hypertrophy, and discusses the molecular mechanisms, sarcomeric organization, and signaling pathway involved, also showing that the cardiac markers of pathological hypertrophy (atrial natriuretic factor, β-myosin heavy chain and α-skeletal actin) are not increased. There is no fibrosis and no cardiac dysfunction in eccentric or concentric hypertrophy induced by exercise training. Therefore, the renin-angiotensin system has been implicated as one of the regulatory mechanisms for the control of cardiac function and structure. Here, we show that the angiotensin II type 1 (AT1) receptor is locally activated in pathological and physiological cardiac hypertrophy, although with exercise training it can be stimulated independently of the involvement of angiotensin II. Recently, microRNAs (miRs) have been investigated as a possible therapeutic approach since they regulate the translation of the target mRNAs involved in cardiac hypertrophy; however, miRs in relation to physiological hypertrophy have not been extensively investigated. We summarize here profiling studies that have examined miRs in pathological and physiological cardiac hypertrophy. An understanding of physiological cardiac remodeling may provide a strategy to improve ventricular function in cardiac dysfunction.
Resumo:
Multidrug resistance (MDR) poses a serious impediment to the success of chemotherapy for laryngeal cancer. To identify microRNAs and mRNAs associated with MDR of human laryngeal cancer Hep-2 cells, we developed a multidrug-resistant human laryngeal cancer subline, designated Hep-2/v, by exposing Hep-2 cells to stepwise increasing concentrations of vincristine (0.02-0.96'µM). Microarray assays were performed to compare the microRNA and mRNA expression profiles of Hep-2 and Hep-2/v cells. Compared to Hep-2 cells, Hep-2/v cells were more resistant to chemotherapy drugs (∼45-fold more resistant to vincristine, 5.1-fold more resistant to cisplatin, and 5.6-fold more resistant to 5-fluorouracil) and had a longer doubling time (42.33±1.76 vs 28.75±1.12'h, P<0.05), higher percentage of cells in G0/G1 phase (80.98±0.52 vs69.14±0.89, P<0.05), increased efflux of rhodamine 123 (95.97±0.56 vs 12.40±0.44%, P<0.01), and up-regulated MDR1 expression. A total of 7 microRNAs and 605 mRNAs were differentially expressed between the two cell types. Of the differentially expressed mRNAs identified, regulator of G-protein signaling 10, high-temperature requirement protein A1, and nuclear protein 1 were found to be the putative targets of the differentially expressed microRNAs identified. These findings may open a new avenue for clarifying the mechanisms responsible for MDR in laryngeal cancer.