5 resultados para mechatronics
em Scielo Saúde Pública - SP
Resumo:
In recent years the analysis and synthesis of (mechanical) control systems in descriptor form has been established. This general description of dynamical systems is important for many applications in mechanics and mechatronics, in electrical and electronic engineering, and in chemical engineering as well. This contribution deals with linear mechanical descriptor systems and its control design with respect to a quadratic performance criterion. Here, the notion of properness plays an important role whether the standard Riccati approach can be applied as usual or not. Properness and non-properness distinguish between the cases if the descriptor system is exclusively governed by the control input or by its higher-order time-derivatives additionally. In the unusual case of non-proper systems a quite different problem of optimal control design has to be considered. Both cases will be solved completely.
Resumo:
This work presents recent results concerning a design methodology used to estimate the positioning deviation for a gantry (Cartesian) manipulator, related mainly to structural elastic deformation of components during operational conditions. The case-study manipulator is classified as gantry type and its basic dimensions are 1,53m x 0,97m x 1,38m. The dimensions used for the calculation of effective workspace due to end-effector path displacement are: 1m x 0,5m x 0,5m. The manipulator is composed by four basic modules defined as module X, module Y, module Z and terminal arm, where is connected the end-effector. Each module controlled axis performs a linear-parabolic positioning movement. The planning path algorithm has the maximum velocity and the total distance as input parameters for a given task. The acceleration and deceleration times are the same. Denavit-Hartemberg parameterization method is used in the manipulator kinematics model. The gantry manipulator can be modeled as four rigid bodies with three degrees-of-freedom in translational movements, connected as an open kinematics chain. Dynamic analysis were performed considering inertial parameters specification such as component mass, inertia and center of gravity position of each module. These parameters are essential for a correct manipulator dynamic modelling, due to multiple possibilities of motion and manipulation of objects with different masses. The dynamic analysis consists of a mathematical modelling of the static and dynamic interactions among the modules. The computation of the structural deformations uses the finite element method (FEM).
Resumo:
This work presents a methodology for the development of Teleoperated Robotic Systems through the Internet. Initially, it is presented a bibliographical review of the Telerobotic systems that uses Internet as way of control. The methodology is implemented and tested through the development of two systems. The first is a manipulator with two degrees of freedom commanded remotely through the Internet denominated RobWebCam (http://www.graco.unb.br/robwebcam). The second is a system which teleoperates an ABB (Asea Brown Boveri) Industrial Robot of six degrees of freedom denominated RobWebLink (http://webrobot.graco.unb.br). RobWebCam is composed of a manipulator with two degrees of freedom, a video camera, Internet, computers and communication driver between the manipulator and the Unix system; and RobWebLink composed of the same components plus the Industrial Robot. With the use of this technology, it is possible to move far distant positioning objects minimizing transport costs, materials and people; acting in real time in the process that is wanted to be controller. This work demonstrates that the teleoperating via Internet of robotic systems and other equipments is viable, in spite of using rate transmission data with low bandwidth. Possible applications include remote surveillance, control and remote diagnosis and maintenance of machines and equipments.
Resumo:
This work presents the implementation and comparison of three different techniques of three-dimensional computer vision as follows: • Stereo vision - correlation between two 2D images • Sensorial fusion - use of different sensors: camera 2D + ultrasound sensor (1D); • Structured light The computer vision techniques herein presented took into consideration the following characteristics: • Computational effort ( elapsed time for obtain the 3D information); • Influence of environmental conditions (noise due to a non uniform lighting, overlighting and shades); • The cost of the infrastructure for each technique; • Analysis of uncertainties, precision and accuracy. The option of using the Matlab software, version 5.1, for algorithm implementation of the three techniques was due to the simplicity of their commands, programming and debugging. Besides, this software is well known and used by the academic community, allowing the results of this work to be obtained and verified. Examples of three-dimensional vision applied to robotic assembling tasks ("pick-and-place") are presented.
Resumo:
This paper presents a new type of magnetic bearing with active control only in axial direction. The bearing uses two pairs of permanent magnets working in attraction mode to restrict the radial motion and a control system composed of two electromagnets, a gap sensor and a controller to keep the axis in a fixed axial position. The principle, the dynamic model for axial motion and the control system for this bearing are presented. Finally, by experiments conducted in a prototype, the effectiveness of the presented concept is shown.