171 resultados para maximum sustainable yield
em Scielo Saúde Pública - SP
Resumo:
Yerba mate (Ilex paraguariensis) is a tree species native to the subtropical regions of South America, and is found in Brazil predominantly in the southern region. Despite the historical importance in this region, so far, studies on crop nutrition to improve yields are scarce. Thus, this study evaluated the effect of potassium rates on K soil availability, and the yield and nutritional status of yerba mate. The experiment was conducted in São Mateus do Sul, State of Paraná, on a Humox soil, where K2O rates of 0, 20, 40, 80, 160, and 320 kg ha-1 were tested on 7-year-old plantations. The experiment was harvested 24 months after installation by removing approximately 95 % of the canopy that had sprouted from the previous harvest. The soil was evaluated for K availability in the layers 0-10, 0-20, 10-20, and 20-40 cm. The plant parts leaf fresh matter (LM), twigs (TW), thick branches (BR) and commercial yerba mate (COYM), i.e., LM+TW, were analyzed. In addition, the relationship between fresh matter/dry matter (FM/DM) and K concentration in LM, AG and BR were evaluated. The fertilization increased K availability in all evaluated soil layers, indicating good mobility of the nutrient even at low rates. Yerba mate responded positively to increasing K2O rates with higher yields of all harvested components. The crop proved K-demanding, with a maximum COYM yield of 28.5 t ha-1, when 72 mg dm-3 K was available in the 0-20 cm layer. Yerba mate in the plant production stage requires soil K availability at medium to high level; in clayey soil with low K availability, a rate of 300 kg ha-1 K2O should be applied at 24 month intervals to obtain high yields. A leaf K concentration of 16.0 g ha-1 is suitable for yerba mate in the growth stage.
Resumo:
Tomato (Lycopersicon esculentum Mill.) cv. Santa Clara was grown on a silt clay soil with 46 mg dm-3 Mehlich 1 extractable K, to evaluate the effects of trickle-applied K rates on fruit yield and to establish K critical concentrations in soil and in plant petioles. Six potassium rates (0, 48, 119, 189, 259 and 400 kg ha-1 K) were applied in a randomized complete block design with four replications. Soil and plant K critical levels were determined at two plant growth stages (at the beginning of the second and fourth cluster flowering). Total, marketable and weighted yields increased with K rates, reaching their maximum of 86.4, 73.4, and 54.9 ton ha-1 at 198, 194, and 125 kg ha-1 K , respectively. At the first soil sampling date K critical concentrations in the soil associated with K rates for maximum marketable and weighted yields were 92 and 68 mg dm-3, respectively. Potassium critical concentrations in the dry matter of the petioles sampled by the beginning of the second and fourth cluster flowering time, associated with maximum weighted yield, were 10.30 and 7.30 dag kg-1, respectively.
Resumo:
The system of rice intensification has emerged as a promising rice production package but weed infestation could lead to incomplete benefits from the system. A two-year field study was performed to determine an appropriate method of weed management in SRI. Weed management treatments were manual hoeing 20, 40 and 60 days after transplanting (DAT), hoeing with rotary hoe at 20, 40 and 60 DAT, hoeing with rotary hoe at 20 DAT + spray with sorghum and sunflower water extracts at 15 L ha-1 40 DAT, manual hoeing 20 DAT + spray with sorghum and sunflower water extracts, both in equal amount, at 15 L ha-1 40 DAT, orthosulfamuron at 145 g a.i. ha-1 7 DAT, weedy check and weed free. Manual hoeing at 20, 40 and 60 DAT was the treatment that exhibited the maximum kernel yield i.e. 5.34 and 4.99 t ha-1., which was 8.4 and 7.2% higher than orthosulfamuron and 61.0 and 64.9% higher than weedy check, during both years of study, respectively. The highest weed suppression was also achieved by manual hoeing at 20, 40 and 60 DAT with weed control efficiency of 87.89 and 82.32% during 2010 and 2011, respectively. Manual hoeing at 20, 40 and 60 DAT is an eco-friendly, non-chemical weed control method to increase kernel yield of fine rice under SRI.
Resumo:
ABSTRACT Sorghum arundinaceum (Desv.) Stapf is a weed that belongs to the Poaceae family and is widespread throughout Brazil. Despite the frequent occurrence, infesting cultivated areas, there is little research concerning the biology and physiology of this species. The objective of this research was to evaluate the growth, carbon partitioning and physiological characteristics of the weed Sorghum arundinaceum in greenhouse. Plants were collected at regular intervals of seven days, from 22 to 113 days after transplanting (DAT). In each sample, we determined plant height, root volume, leaf area and dry matter, and subsequently we perfomed the growth analysis, we have determined the dry matter partitioning among organs, the accumulation of dry matter, the specific leaf area, the relative growth rate and leaf weight ratio. At 36, 78 and 113 DAT, the photosynthetic and transpiration rates, stomatal conductance, CO2 concentration and chlorophyll fluorescence were evaluated. The Sorghum arundinaceum reached 1.91 in height, with slow initial growth and allocated much of the biomass in the roots. The photosynthetic rate and the maximum quantum yield of FSII are similar throughout the growth cycle. At maturity the Sorghum arundinaceum presents higher values of transpiration rate, stomatal conductance and non-photochemical quenching coefficient (NPQ).
Resumo:
Isoamyl butyrate production was investigated using free and immobilized lipases by esterification of butyric acid with isoamyl alcohol in a solvent-free system and in an organic media. Among the enzymes studied, Lipozyme TL IM was found to be the most active catalyst in n-hexane as a solvent. The effects of different solvents and the amount of water added on conversion rates were studied. A maximum conversion yield of 80% in n-hexano at 48 h was obtained under the following conditions: 3 g L-1 of Lipozyme TL IM, 30 ºC, 180 rpm of agitation, isoamyl alcohol to butyric acid molar ratio of 1:1 and acid substrate concentration of 0.06 M.
Resumo:
Citrus orchards are very important in Brazil, especially in São Paulo State, where occupy an area of 600,000 ha approximately. To identify sustainability degree of citrus production system, an energy analysis allows evaluating efficiency of direct and indirect applied inputs. Thus, this study aimed to evaluate citrus production system under energetic point of view, in which invested energy is paid back with citrus production; being compared within three scenarios for operational field efficiency. As result, by sensitivity analysis was determined that fuel was the main energy demander, followed by pesticides and fertilizers. In operational work capacity analysis, all combinations between efficiency (minimum, typical and maximum) and yield levels became positive in the seventh year, except for the combination minimum efficiency and 10 % less yield, positive in the eighth year. The best combination (maximum efficiency and 10 % more yield) has promoted investment payoff around the sixth and seventh year. By this study, it is possible to determine the total energy demand to produce citrus and indentify the applied inputs that need more attention by the decision-makers. Labor and seedlings can be ommited for further studies with citrus, since they were irrelevant. Management of agricultural machinery may pose an important role on decreasing environmental impact of citrus production.
Resumo:
There is interest in the identification of the best seeding density for new corn hybrids and on reduced use of herbicides for weed control. The objective of this study was to evaluate the effects of seeding density (30, 50, 70, and 90 thousand plants ha-1) and weed control on green ear yield and grain yield in corn cultivar AG 1051. A completely randomized block design was adopted with split-plots (seeding densities assigned to plots) and ten replicates. Weed control was achieved by means of two hoeings and by planting corn intercropped with gliricidia (between corn rows, in pits spaced 0.3 m apart). A "no weeding"treatment was included as well. Increased seeding density increased the total number and weight of marketable green ears and decreased the biomass of both weeds and gliricidia. In non-weeded, intercropped and hoed plots, the maximum grain yield values achieved as seeding density increased were 7,881, 7,021, and 9,213 kg ha-1, respectively, obtained with populations of 67 thousand, 74 thousand, and 67 thousand plants per hectare, respectively. Intercropping did not control weeds (26 species) and provided weed growth, green ear yield, and grain yield (at the lowest densities) similar to those obtained without hoeing, except for total number of green ears, in which no influence of weed control was observed. At densities of 70 thousand and 90 thousand plants per hectare, grain yield with two hoeings was not different from yield values obtained without weeding or in the treatment intercropped with gliricidia, respectively, indicating that increased corn seeding density as well as gliricidiamay help to control weeds.
Resumo:
To achieve better results in the no-tillage system (NTS), it is important to properly manage the cover crop prior to planting by using herbicides, usually glyphosate. The effect of glyphosate on plant coverage is slow, and plants take a few days to die completely. Thus, when applying the herbicide on the same day of planting soybean or corn, cover crops are still alive and standing, causing initial shading on seedlings of the crop and delaying its establishment. Therefore, this study aimed to evaluate the effect of distinct cover crops and their timing of desiccation prior to planting soybean or corn, on crop yield and yield components. Two experiments were installed, one for soybean and another for corn. Each experiment consisted in combining three cover crops (Brachiaria brizantha, common bean or millet) chemically desiccated at two timings before planting the crop (15 or 0 days before planting) under no-tillage system (NTS). Experiments were installed in a completely randomized block design with five replications. Brachiaria brizantha produced the highest amount of biomass; common bean and millet as cover crops allowed higher soybean grain yields; herbicide application under common bean, millet and Brachiaria brizantha 15 days before planting soybean allowed higher crop grain yields; desiccation timing of common bean did not affect corn grain yield; Brachiaria brizantha should be desiccated 15 days before planting corn to allow maximum grain yield; when millet was used as a cover crop, glyphosate application at planting of corn allowed the highest grain yield.
Resumo:
Photosynthetic performance of distinct marine macroalgae, Ulva fasciata Delile (green alga), Lobophora variegata (J. V. Lamouroux) Womersley ex E. C. Oliveira (brown alga), and Plocamium brasiliensis (Greville) M. A. Howe & W. R. Taylor (red alga), were compared using a pulse amplitude-modulated fluorometer. The maximum quantum yield (Fv/Fm) ranged from 0.80 to 0.51, and the lowest value was found in P. brasiliensis. Under 400 µmol photons m-2 s-1 irradiance, the highest value of photochemical quenching (qP = 0.92 ± 0.13) was observed for U. fasciata. The red alga P. brasiliensis dissipated high amounts of excitation energy (qN = 0.56 ± 0.09), resulting in relatively low values for the effective quantum yield of PS-II (0.23 ± 0.04), as well as for the relative electron transport rate (3.3 ± 0.7). The high photosynthetic potential found for U. fasciata partially explains the species ability for rapid growth and high productivity.
Resumo:
A biosensor was developed for spectrophotometric determination of glucose concentrations in real samples of orange juice energetic drinks, and sport drinks. The biosensor consisted of glucose oxidase (GOD) and horseradish peroxidase (HRP) immobilized onto polyaniline activated with glutaraldehyde (PANIG). Immobilization parameters were optimized for GOD, and maximum immobilization yield was 16% when 5.0 mg of PANIG and 8.9 U prepared in 0.1 mol.L-1 sodium phosphate buffer (pH 7.0) reacted for 60 minutes at 4 °C with gentle stirring. The linear operational range for glucose determination using optimized operational parameters was between 0.05 and 6.0 mg.mL-1 with a very good reproducibility of response. The results obtained in the biosensor were compared with those obtained using free enzymes (commercial kits) and then validated through statistical analysis using the Tukey test (95% confidence interval).
Resumo:
The objective of this study was to obtain babassu coconut milk powder microencapsulated by spray drying process using gum Arabic as wall material. Coconut milk was extracted by babassu peeling, grinding (with two parts of water), and vacuum filtration. The milk was pasteurized at 85 ºC for 15 minutes and homogenized to break up the fat globules, rendering the milk a uniform consistency. A central composite rotatable design with a range of independent variables was used: inlet air temperature in the dryer (170-220 ºC) and gum Arabic concentration (10-20%, w/w) on the responses: moisture content (0.52-2.39%), hygroscopicity (6.98-9.86 g adsorbed water/100g solids), water activity (0.14-0.58), lipid oxidation (0.012-0.064 meq peroxide/kg oil), and process yield (20.33-30.19%). All variables influenced significantly the responses evaluated. Microencapsulation was optimized for maximum process yield and minimal lipid oxidation. The coconut milk powder obtained at optimum conditions was characterized in terms of morphology, particle size distribution, bulk and absolute density, porosity, and wettability.
Resumo:
Abstract Optimization of polyphenols extraction from plum (Prunus salicina Lindl.) was evaluated using response surface methodology. The Box-Behnken experimental results showed the optimal conditions involved an extraction temperature of 59 °C, a sonication time of 47 min, and an ethanol concentration of 61% respectively. The maximum extraction yield of total polyphenols was 44.74 mg gallic acid equivalents per gram of dried plum at optimal conditions. Polyphenol extracts exhibited stronger antioxidant activities than Vc by evaluating of 1,1-diphenyl-2-picrylhydrazyl (DPPH) and hydroxyl radical scavenging activity. Furthermore, polyphenol extracts (IC50 = 179 g/mL) showed obvious inhibitory effects on xanthine oxidase. These findings suggest that polyphenol extracts from P. salicina can be potentially used as natural antioxidant and xanthine oxidase inhibitory agents.
Resumo:
The effects of liming rates on growth and heart-of-palm yield of peach palm plants (Bactris gasipaes Kunth) were studied in a two-year field experiment conducted in Pariquera-Açu, State of Sao Paulo, Brazil. Soils in this region are allic (sub group Ultic Haplorthox), with base saturation ranging from 15 to 26 % of the cation exchange capacity (CEC). A randomized complete block design, with five rates of dolomitic limestone (0, 0.7, 4.7, 8.7, and 14.6 Mg ha-1) and five replications was utilized. Individual plots were composed of 80 plants but only the inner rows (24 plants) were used for data recording. Planting spacing was 2 x 1 m. There was a cubic effect of liming rates on growth and yield. Maximum heart-of-palm yield was estimated to be achieved at 4.3 Mg ha-1 of limestone application, corresponding to 51.4 % soil base saturation. A significant decrease in growth and yield was observed when large amounts of limestone were applied (8.7 and 14.6 Mg ha-1), probably due to a decreased micronutrient availability.
Resumo:
Alfalfa is an important forage crop with high nutritive value, although highly susceptible to soil acidity. Liming is one of the most efficient and prevailing practices to correct soil acidity and improve alfalfa yield. The objective of this study was to evaluate response to liming of alfalfa grown in a greenhouse on a Typic Quartzipsamment soil. The treatments consisted of four lime rates (0, 3.8, 6.6 and 10.3 Mg ha-1) and two cuts. Alfalfa dry matter increased quadratically with increasing lime rates. In general, dry matter yield was maximized by a lime rate of 8.0 Mg ha-1. Except for the control, the dry matter nutrient contents in the treatments were adequate. The positive linear correlation between root and nodule dry matter with lime rates indicated improvement of these plant traits with decreasing soil acidity. The soil acidity indices pH, base saturation, Ca2+ concentration, Mg2+ concentration, and H + Al were relevant factors in the assessment of alfalfa yield. The magnitude of influence of these soil acidity indices on yield as determined by the coefficient of determination (R²) varied and decreased in the order: base saturation, H + Al, pH, Ca and Mg concentrations. Optimum values of selected soil chemical properties were defined for maximum shoot dry matter; these values can serve as a guideline for alfalfa liming to improve the yield of this forage on acid soils.
Resumo:
Annual crop yield and nutrition have shown differentiated responses to modifications in soil chemical properties brought about by gypsum application. The aim of this study was to evaluate the effect of gypsum application rates on the chemical properties of a Latossolo Bruno (Clayey Oxisol), as well as on the nutrition and yield of a maize-barley succession under no-till. The experiment was set up in November 2009 in Guarapuava, Parana, Brazil, applying gypsum rates of 0.0, 1.5, 3.0, 4.5, and 6.0 Mg ha-1 to the soil surface upon sowing maize, with crop succession of barley. Gypsum application decreased the levels of Al3+ and Mg2+ in the 0.0-0.1 m layer and increased soil pH in the layers from 0.2-0.6 m depth. Gypsum application has increased the levels of Ca2+ in all soil layers up to 0.6 m, and the levels of S-SO4(2-) up to 0.8 m. In both crops, the leaf concentrations of Ca and S were increased while Mg concentrations have decreased as a function of gypsum rates. There was also an effect of gypsum rates on grain yield, with a quadratic response of maize and a linear increase for barley. Yield increases were up to 11 and 12 % in relation to control for the maximum technical efficiency (MTE) rates of 3.8 and 6.0 Mg ha-1 of gypsum, respectively. Gypsum application improved soil fertility in the profile, especially in the subsurface, as well as plant nutrition, increasing the yields of maize and barley.