143 resultados para lipopolysaccharide-induced fever

em Scielo Saúde Pública - SP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been demonstrated that nitric oxide (NO) has a thermoregulatory action, but very little is known about the mechanisms involved. In the present study we determined the effect of neuronal nitric oxide synthase (nNOS) inhibition on thermoregulation. We used 7-nitroindazole (7-NI, 1, 10 and 30 mg/kg body weight), a selective nNOS inhibitor, injected intraperitoneally into normothermic Wistar rats (200-250 g) and rats with fever induced by lipopolysaccharide (LPS) (100 µg/kg body weight) administration. It has been demonstrated that the effects of 30 mg/kg of 7-NI given intraperitoneally may inhibit 60% of nNOS activity in rats. In all experiments the colonic temperature of awake unrestrained rats was measured over a period of 5 h at 15-min intervals after intraperitoneal injection of 7-NI. We observed that the injection of 30 mg/kg of 7-NI induced a 1.5oC drop in body temperature, which was statistically significant 1 h after injection (P<0.02). The coinjection of LPS and 7-NI was followed by a significant (P<0.02) hypothermia about 0.5oC below baseline. These findings show that an nNOS isoform is required for thermoregulation and participates in the production of fever in rats.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mice infected with T. cruzi strain, acquire a high level of susceptibility to the effects of bacterial gram-negative LPS. The LD50 of adult female SW mice to LPS from S. typhosa, decreases from 450 to 2,5 mcg 10-12 days after T. cruzi infection. This hyperreactivity to LPS induced by T. cruzi presents all the characteristics of that found in infection caused by many other agents. During the acaute phase of experimental infection with T. cruzi Y strain, mice generally die with a hypovolemic shock very similar to that induced in uninfected animals injected with an adequate dose of bacterial endotoxin. There is evidence for and against the hypothesis that LPS absorbed from the instestinal tract may be involved in the mechanism of death of mice during the acute phase of T. cruzi infection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS) activates neutrophils and monocytes, inducing a wide array of biological activities. LPS rough (R) and smooth (S) forms signal through Toll-like receptor 4 (TLR4), but differ in their requirement for CD14. Since the R-form LPS can interact with TLR4 independent of CD14 and the differential expression of CD14 on neutrophils and monocytes, we used the S-form LPS from Salmonella abortus equi and the R-form LPS from Salmonella minnesota mutants to evaluate LPS-induced activation of human neutrophils and monocytes in whole blood from healthy volunteers. Expression of cell surface receptors and reactive oxygen species (ROS) and nitric oxide (NO) generation were measured by flow cytometry in whole blood monocytes and neutrophils. The oxidative burst was quantified by measuring the oxidation of 2',7'-dichlorofluorescein diacetate and the NO production was quantified by measuring the oxidation of 4-amino-5-methylamino-2',7'-difluorofluorescein diacetate. A small increase of TLR4 expression by monocytes was observed after 6 h of LPS stimulation. Monocyte CD14 modulation by LPS was biphasic, with an initial 30% increase followed by a 40% decrease in expression after 6 h of incubation. Expression of CD11b was rapidly up-regulated, doubling after 5 min on monocytes, while down-regulation of CXCR2 was observed on neutrophils, reaching a 50% reduction after 6 h. LPS induced low production of ROS and NO. This study shows a complex LPS-induced cell surface receptor modulation on human monocytes and neutrophils, with up- and down-regulation depending on the receptor. R- and S-form LPS activate human neutrophils similarly, despite the low CD14 expression, if the stimulation occurs in whole blood.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide exerts many effects on many cell lines, including cytokine secretion, and cell apoptosis and necrosis. We investigated the in vitro effects of lipopolysaccharide on apoptosis of cultured human dental pulp cells and the expression of Bcl-2 and Bax. Dental pulp cells showed morphologies typical of apoptosis after exposure to lipopolysaccharide. Flow cytometry showed that the rate of apoptosis of human dental pulp cells increased with increasing lipopolysaccharide concentration. Compared with controls, lipopolysaccharide promoted pulp cell apoptosis (P < 0.05) from 0.1 to 100 μg/mL but not at 0.01 μg/mL. Cell apoptosis was statistically higher after exposure to lipopolysaccharide for 3 days compared with 1 day, but no difference was observed between 3 and 5 days. Immunohistochemistry showed that expression of Bax and Bcl-2 was enhanced by lipopolysaccharide at high concentrations, but no evident expression was observed at low concentrations (0.01 and 0.1 μg/mL) or in the control groups. In conclusion, lipopolysaccharide induced dental pulp cell apoptosis in a dose-dependent manner, but apoptosis did not increase with treatment duration. The expression of the apoptosis regulatory proteins Bax and Bcl-2 was also up-regulated in pulp cells after exposure to a high concentration of lipopolysaccharide.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigated the effect of propofol (Prop) administration (10 mg kg-1 h-1, intravenously) on lipopolysaccharide (LPS)-induced acute lung injury and its effect on cluster of differentiation (CD) 14 and Toll-like receptor (TLR) 4 expression in lung tissue of anesthetized, ventilated rats. Twenty-four male Wistar rats were randomly divided into three groups of 8 rats each: control, LPS, and LPS+Prop. Lung injury was assayed via blood gas analysis and lung histology, and tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels were determined in bronchoalveolar lavage fluid using ELISA. Real-time polymerase chain reaction was used to detect CD14 and TLR4 mRNA levels, and CD14 and TLR4 protein expression was determined by Western blot. The pathological scores were 1.2 ± 0.9, 3.3 ± 1.1, and 1.9 ± 1.0 for the control, LPS, and LPS+Prop groups, respectively, with statistically significant differences between control and LPS groups (P < 0.05) and between LPS and LPS+Prop groups (P < 0.05). The administration of LPS resulted in a significant increase in TNF-α and IL-1β levels, 7- and 3.5-fold, respectively (P < 0.05), while treatment with propofol partially blunted the secretion of both cytokines (P < 0.05). CD14 and TLR4 mRNA levels were increased in the LPS group (1.48 ± 0.05 and 1.26 ± 0.03, respectively) compared to the control group (1.00 ± 0.20 and 1.00 ± 0.02, respectively; P < 0.05), while propofol treatment blunted this effect (1.16 ± 0.05 and 1.12 ± 0.05, respectively; P < 0.05). Both CD14 and TLR4 protein levels were elevated in the LPS group compared to the control group (P < 0.05), while propofol treatment partially decreased the expression of CD14 and TLR4 protein versus LPS alone (P < 0.05). Our study indicates that propofol prevents lung injury, most likely by inhibition of CD14 and TLR4 expression.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

β-arrestins are expressed proteins that were first described, and are well-known, as negative regulators of G protein-coupled receptor signaling. Penehyclidine hydrochloride (PHC) is a new anti-cholinergic drug that can inhibit biomembrane lipid peroxidation, and decrease cytokines and oxyradicals. However, to date, no reports on the effects of PHC on β-arrestin-1 in cells have been published. The aim of this study was to investigate the effect of PHC on β-arrestin-1 expression in lipopolysaccharide (LPS)-induced human pulmonary microvascular endothelial cells (HPMEC). Cultured HPMEC were pretreated with PHC, followed by LPS treatment. Muscarinic receptor mRNAs were assayed by real-time quantitative PCR. Cell viability was assayed by the methyl thiazolyl tetrazolium (MTT) conversion test. The dose and time effects of PHC on β-arrestin-1 expression in LPS-induced HPMEC were determined by Western blot analysis. Cell malondialdehyde (MDA) level and superoxide dismutase (SOD) activity were measured. It was found that the M3 receptor was the one most highly expressed, and was activated 5 min after LPS challenge. Furthermore, 2 μg/mL PHC significantly upregulated expression of β-arrestin-1 within 10 to 15 min. Compared with the control group, MDA levels in cells were remarkably increased and SOD activities were significantly decreased in LPS pretreated cells, while PHC markedly decreased MDA levels and increased SOD activities. We conclude that PHC attenuated ROS injury by upregulating β-arrestin-1 expression, thereby implicating a mechanism by which PHC may exert its protective effects against LPS-induced pulmonary microvascular endothelial cell injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The aim of this study was to investigate the effect of propofol pretreatment on lipopolysaccharide (LPS)-induced acute lung injury (ALI) and the role of the phosphoinositide-3-kinase/protein kinase B (PI3K/Akt) pathway in this procedure. Survival was determined 48 h after LPS injection. At 1 h after LPS challenge, the lung wet- to dry-weight ratio was examined, and concentrations of protein, tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6) in bronchoalveolar lavage fluid (BALF) were determined using the bicinchoninic acid method or ELISA. Lung injury was assayed via lung histological examination. PI3K and p-Akt expression levels in the lung tissue were determined by Western blotting. Propofol pretreatment prolonged survival, decreased the concentrations of protein, TNF-α, and IL-6 in BALF, attenuated ALI, and increased PI3K and p-Akt expression in the lung tissue of LPS-challenged rats, whereas treatment with wortmannin, a PI3K/Akt pathway specific inhibitor, blunted this effect. Our study indicates that propofol pretreatment attenuated LPS-induced ALI, partly by activation of the PI3K/Akt pathway.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study aimed to determine the effects of different concentrations of propofol (2,6-diisopropylphenol) on lipopolysaccharide (LPS)-induced expression and release of high-mobility group box 1 protein (HMGB1) in mouse macrophages. Mouse macrophage cell line RAW264.7 cells were randomly divided into 5 treatment groups. Expression levels of HMGB1 mRNA were detected using RT-PCR, and cell culture supernatant HMGB1 protein levels were detected using enzyme-linked immunosorbent assay (ELISA). Translocation of HMGB1 from the nucleus to the cytoplasm in macrophages was observed by Western blotting and activity of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) in the nucleus was detected using ELISA. HMGB1 mRNA expression levels increased significantly in the cell culture supernatant and in cells after 24 h of stimulating RAW264.7 cells with LPS (500 ng/mL). However, HMGB1 mRNA expression levels in the P2 and P3 groups, which received 500 ng/mL LPS with 25 or 50 μmol/mL propofol, respectively, were significantly lower than those in the group receiving LPS stimulation (P<0.05). After stimulation by LPS, HMGB1 protein levels were reduced significantly in the nucleus but were increased in the cytoplasm (P<0.05). Simultaneously, the activity of NF-κB was enhanced significantly (P<0.05). After propofol intervention, HMGB1 translocation from the nucleus to the cytoplasm and NF-κB activity were inhibited significantly (each P<0.05). Thus, propofol can inhibit the LPS-induced expression and release of HMGB1 by inhibiting HMGB1 translocation and NF-κB activity in RAW264.7 cells, suggesting propofol may be protective in patients with sepsis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lipopolysaccharide (LPS)-induced endotoxemia triggers the secretion of proinflammatory cytokines and can cause acute lung injury (ALI). The high mobility group box 1 (HMGB1) protein plays an important role as a late mediator of sepsis and ALI. Galantamine (GAL) is a central acetylcholinesterase inhibitor that inhibits the expression of HMGB1. This study evaluated the effects of GAL by measuring levels of inflammatory mediators and observing histopathological features associated with LPS-induced ALI. Sixty 8-10 week old male Sprague-Dawley rats (200-240 g) were randomized into three groups as follows: control group, LPS group (7.5 mg/kg LPS), and LPS+GAL group (5 mg/kg GAL before LPS administration). Histopathological examination of lung specimens obtained 12 h after LPS administration was performed to analyze changes in wet-to-dry (W/D) weight ratio, myeloperoxidase (MPO) activity, and HMGB1 expression level. Additionally, plasma concentrations of tumor necrosis factor-α, interleukin-6, and HMGB1 were measured using an enzyme-linked immunosorbent assay at 0 (baseline), 3, 6, 9, and 12 h after LPS administration. Mortality in the three groups was recorded at 72 h. LPS-induced ALI was characterized by distortion of pulmonary architecture and elevation of MPO activity, W/D weight ratio, and levels of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-6, and HMGB1. Pretreatment with GAL significantly reduced the LPS-induced lung pathological changes, W/D weight ratio, levels of pro-inflammatory cytokines and MPO activity (ANOVA). Moreover, GAL treatment significantly decreased the mortality rate (ANOVA). In conclusion, we demonstrated that GAL exerted a protective effect on LPS-induced ALI in rats.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Endogenous carbon monoxide (CO), which is produced by the enzyme heme oxygenase (HO), participates as a neuromodulator in physiological processes such as thermoregulation and nociception by stimulating the formation of 3′,5′-cyclic guanosine monophosphate (cGMP). In particular, the acute physical restraint-induced fever of rats can be blocked by inhibiting the enzyme HO. A previous study reported that the HO-CO-cGMP pathway plays a key phasic antinociceptive role in modulating noninflammatory acute pain. Thus, this study evaluated the involvement of the HO-CO-cGMP pathway in antinociception induced by acute stress in male Wistar rats (250-300 g; n=8/group) using the analgesia index (AI) in the tail flick test. The results showed that antinociception induced by acute stress was not dependent on the HO-CO-cGMP pathway, as neither treatment with the HO inhibitor ZnDBPG nor heme-lysinate altered the AI. However, antinociception was dependent on cGMP activity because pretreatment with the guanylate cyclase inhibitor 1H-[1,2,4] oxadiazolo [4,3-a] quinoxaline-1-one (ODQ) blocked the increase in the AI induced by acute stress.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The objective of this study was to determine the effect of eight 5-hydroxy-5-trifluoromethyl-4,5-dihydro-1H-1-carboxyamidepyrazoles (TFDPs) on rat body temperature and baker’s yeast-induced fever. TFDPs or vehicle (5% Tween 80 in 0.9% NaCl, 5 mL/kg) were injected subcutaneously and rectal temperature was measured as a function of time in 28-day-old male Wistar rats (N = 5-12 per group). Antipyretic activity was determined in feverish animals injected with baker’s yeast (Saccharomyces cerevisiae suspension, 0.135 mg/kg, 10 mL/kg, ip). 3-Ethyl- and 3-propyl-TFDP (140 and 200 μmol/kg, respectively, 4 h after yeast injection) attenuated baker’s yeast-induced fever by 61 and 82%, respectively. These two effective antipyretics were selected for subsequent analysis of putative mechanisms of action. We then determined the effects on cyclooxygenase-1 and -2 (COX-1 and COX-2) activities on 1,1-diphenyl-2-picrylhydrazyl (DPPH) oxidation in vitro, on tumor necrosis factor-α (TNF-α) and interleukin-1β (IL-1β) levels and on leukocyte counts in the washes of peritoneal cavities of rats injected with baker’s yeast. While 3-ethyl- and 3-propyl-TFDP did not reduce baker’s yeast-induced increases of IL-1β or TNF-α levels, 3-ethyl-TFDP caused a 42% reduction in peritoneal leukocyte count. 3-Ethyl- and 3-propyl-TFDP did not alter COX-1 or COX-2 activities in vitro, but presented antioxidant activity in the DPPH assay with an IC50 of 39 mM (25-62) and 163 mM (136-196), respectively. The data indicate that mechanisms of action of these two novel antipyretic pyrazole derivatives do not involve the classic inhibition of the COX pathway or pyrogenic cytokine release.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Molecular findings that confirmed the participation of ovine herpesvirus 2 (OVH-2) in the lesions that were consistent with those observed in malignant catarrhal fever of cattle are described. Three mixed-breed cattle from Rio Grande do Norte state demonstrated clinical manifestations that included mucopurulent nasal discharge, corneal opacity and motor incoordination. Routine necropsy examination demonstrated ulcerations and hemorrhage of the oral cavity, corneal opacity, and lymph node enlargement. Significant histopathological findings included widespread necrotizing vasculitis, non-suppurative meningoencephalitis, lymphocytic interstitial nephritis and hepatitis, and thrombosis. PCR assay performed on DNA extracted from kidney and mesenteric lymph node of one animal amplified a product of 423 base pairs corresponding to a target sequence within the ovine herpesvirus 2 (OVH-2) tegument protein gene. Direct sequencing of the PCR products, from extracted DNA of the kidney and mesenteric lymph node of one cow, amplified the partial nucleotide sequences (423 base pairs) of OVH-2 tegument protein gene. Blast analysis confirmed that these sequences have 98-100% identity with similar OVH-2 sequences deposited in GenBank. Phylogenetic analyses, based on the deduced amino acid sequences, demonstrated that the strain of OVH-2 circulating in ruminants from the Brazilian states of Rio Grande do Norte and Minas Gerais are similar to that identified in other geographical locations. These findings confirmed the active participation of OVH-2 in the classical manifestations of sheep associated malignant catarrhal fever.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The immune and central nervous systems are functionally connected and interacting. The concept that the immune signaling to the brain which induces fever during infection and inflammation is mediated by circulating cytokines has been traditionally accepted. Administration of bacterial lipopolysaccharide (LPS) induces the appearance of a so-termed "cytokine cascade" in the circulation more or less concomitantly to the developing febrile response. Also, LPS-like fever can be induced by systemic administration of key cytokines (IL-1ß, TNF-alpha, and others). However, anti-cytokine strategies against IL-1ß or TNF-alpha along with systemic injections of LPS frequently lead to attenuation of the later stages of the febrile response but not of the initial phase of fever, indicating that cytokines are rather involved in the maintenance than in the early induction of fever. Within the last years experimental evidence has accumulated indicating the existence of neural transport pathways of immune signals to the brain. Because subdiaphragmatic vagotomy prevents or attenuates fever in response to intraperitoneal or intravenous injections of LPS, a role for vagal afferent nerve fibers in fever induction has been proposed. Also other sensory nerves may participate in the manifestation of febrile responses under certain experimental conditions. Thus, injection of a small dose of LPS into an artificial subcutaneous chamber results in fever and formation of cytokines within the inflamed tissue around the site of injection. This febrile response can be blocked in part by injection of a local anesthetic into the subcutaneous chamber, indicating a participation of cutaneous afferent nerve signals in the manifestation of fever in this model. In conclusion, humoral signals and an inflammatory stimulation of afferent sensory nerves can participate in the generation and maintenance of a febrile response.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gastrointestinal motility disturbances during endotoxemia are probably caused by lipopolysaccharide (LPS)-induced factors: candidates include nitric oxide (NO), tumor necrosis factor-alpha (TNF-alpha), interleukin-1ß, and interleukin-6. Flow cytometry was used to determine the effects of LPS and these factors on gastric emptying (evaluated indirectly by determining percent gastric retention; %GR) and gastrointestinal transit (GIT) in male BALB/c mice (23-28 g). NO (300 µg/mouse, N = 8) and TNF-alpha (2 µg/mouse, N = 7) increased (P < 0.01) GR and delayed GIT, mimicking the effect of LPS (50 µg/mouse). During early endotoxemia (1.5 h after LPS), inhibition of inducible NO synthase (iNOS) by a selective inhibitor, 1400 W (150 µg/mouse, N = 11), but not antibody neutralization of TNF-alpha (200 µg/mouse, N = 11), reversed the increase of GR (%GR 78.8 ± 3.3 vs 47.2 ± 7.5%) and the delay of GIT (geometric center 3.7 ± 0.4 vs 5.6 ± 0.2). During late endotoxemia (8 h after LPS), both iNOS inhibition (N = 9) and TNF-alpha neutralization (N = 9) reversed the increase of GR (%GR 33.7 ± 2.0 vs 19.1 ± 2.6% (1400 W) and 20.1 ± 2.0% (anti-TNF-alpha)), but only TNF-alpha neutralization reversed the delay of GIT (geometric center 3.9 ± 0.4 vs 5.9 ± 0.2). These findings suggest that iNOS, but not TNF-alpha, is associated with delayed gastric emptying and GIT during early endotoxemia and that during late endotoxemia, both factors are associated with delayed gastric emptying, but only TNF-alpha is associated with delayed GIT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Flaviviridae family, Flavivirus genus includes viruses that are transmitted to vertebrates by infected mosquitoes or ticks. The genus Flavivirus includes a variety of viruses that cause diseases such as acute febrile illness, encephalitis, and hemorrhagic fever. Flaviviruses primarily infect blood monocytes and tissue macrophages, which have been shown to be permissive, supporting viral replication and serving as virus reservoirs. On the other hand, these cells may have an important antiviral activity related to modulation by cytokine production and by the capacity of these cells to synthesize reactive free radicals such as nitric oxide (NO) which can have a microbicidal effect. The present study was performed in order to determine the production of cytokines interleukin-1beta (IL-1β), tumor necrosis factor -alpha (TNF-α), transforming growth factor- beta (TGF-β) and interferon -alpha (IFN-α) and NO by macrophages infected with one of four Brazilian flaviviruses, Bussuquara virus (BUSV), Yellow Fever virus (YFV), Rocio virus (ROCV) and Encephalitis Saint Louis virus (SLEV), and to verify the possible antiviral effect of NO during macrophage infection with ROCV. Moreover, we asked if the different viruses were able to regulate bacterial lipopolysaccharide (LPS) induced cytokine production. Our results showed that YFV and SLEV reduced the production of IL-1β and TGF-β by LPS-stimulated macrophages, while ROCV only diminished LPS-stimulated TGF-β synthesis. On the other hand, BUSV more likely favored an enhancement of the LPS-induced production of IL-1β by macrophages. Additionally, while most of the viruses stimulated the production of IFN-α, none of them altered the production of TNF-α by murine macrophages. Interestingly, all viruses induced synthesis of NO that was not correlated with antiviral activity for ROCV.