30 resultados para lignin biosynthesis
em Scielo Saúde Pública - SP
Resumo:
Eucalypt plantation has high economical importance in Brazil; however, it has been attacked by various pathogens under different environmental stress conditions. Disease resistance and survival under unfavorable environmental conditions have revealed that the eucalypt has developed highly efficient defense systems. Here we show the results of the Eucalyptus ESTs Genome Project (FORESTs). Using the expressed sequence tags (ESTs) obtained by the Project, contigs of similar sequences from each cDNA library induced and not induced by stress agents were formed, and cDNA sequences similar to other already known molecules, such as plant-signaling molecules, phytoalexins, lignin biosynthesis pathways, PR-proteins and putative genes corresponding to enzymes involved in the detoxification of reactive oxygen species, were identified. We also present general considerations about the mechanisms of Eucalyptus defense against biotic and abiotic stresses. These data are of extreme importance for future eucalypt breeding programs aimed at developing plants with enhanced resistance against pathogens and environmental stresses.
Resumo:
The perchloro-soluble mucroptotein fraction was determined in the cells of Ehrlich ascites carcinoma on the 10th and 12th days post-inoculation of the tumor. After 3 days of a single subcutaneous dose of cyclophosphamide (200 mg/kg) the mucoprotein levels were found considerable lower. This difference was highly significant statistically.
Resumo:
We live in a "Demon-Haunted World". Human health care requires the ever increasing resistance of pathogens to be confronted by a correspondingly fast rate of discovery of novel antibiotics. One of the possible strategies towards this objective involves the rational localization of bioactive phytochemicals. The conceptual basis of the method consists in the surprisingly little known gearings of natural products with morphology, ecology and evolution of their plant source, i. e. an introspection into the general mechanisms of nature.
Resumo:
This article presents an overview of the currently available drugs nifurtimox (NFX) and benznidazole (BZN) used against Trypanosoma cruzi, the aetiological agent of Chagas disease; herein we discuss their limitations along with potential alternatives with a focus on ergosterol biosynthesis inhibitors (EBI). These compounds are currently the most advanced candidates for new anti-T. cruzi agents given that they block de novo production of 24-alkyl-sterols, which are essential for parasite survival and cannot be replaced by a host's own cholesterol. Among these compounds, new triazole derivatives that inhibit the parasite's C14± sterol demethylase are the most promising, as they have been shown to have curative activity in murine models of acute and chronic Chagas disease and are active against NFX and BZN-resistant T. cruzi strains; among this class of compounds, posaconazole (Schering-Plough Research Institute) and ravuconazole (Eisai Company) are poised for clinical trials in Chagas disease patients in the short term. Other T. cruzi-specific EBI, with in vitro and in vivo potency, include squalene synthase, lanosterol synthase and squalene epoxidase-inhibitors as well as compounds with dual mechanisms of action (ergosterol biosynthesis inhibition and free radical generation), but they are less advanced in their development process. The main putative advantages of EBI over currently available therapies include their higher potency and selectivity in both acute and chronic infections, activity against NFX and BZN-resistant T. cruzi strains, and much better tolerability and safety profiles. Limitations may include complexity and cost of manufacture of the new compounds. As for any new drug, such compounds will require extensive clinical testing before being introduced for clinical use, and the complexity of such studies, particularly in chronic patients, will be compounded by the current limitations in the verification of true parasitological cures for T. cruzi infections.
Resumo:
The development of new drugs is one strategy for malaria control. Biochemical pathways localised in the apicoplast of the parasite, such as the synthesis of isoprenic precursors, are excellent targets because they are different or absent in the human host. Isoprenoids are a large and highly diverse group of natural products with many functions and their synthesis is essential for the parasite's survival. During the last few years, the genes, enzymes, intermediates and mechanisms of this biosynthetic route have been elucidated. In this review, we comment on some aspects of the methylerythritol phosphate pathway and discuss the presence of diverse isoprenic products such as dolichol, ubiquinone, carotenoids, menaquinone and isoprenylated proteins, which are biosynthesised during the intraerythrocytic stages of Plasmodium falciparum.
Resumo:
The objective of this work was to evaluate the extent of protein contamination on Klason lignin (KL) in tropical grasses and legumes, and to propose an equation to estimate the protein-free content of Klason lignin (KLp). Five grass (30 samples) and 12 legume species (31 samples) were evaluated. Legumes had higher KL contents. Protein contamination was significant in both grasses and legumes, but greater in legume samples. The model to predict KLp was based on KL and crude protein (CP) contents, as follows: KLp = 0.8807KL - 0.0938KL x D - 0.00338CP (R2=0.935), in which D=0, for grasses, and D=1 for legumes.
Resumo:
The adsorption kinetics and equilibrium of methylene blue (MB) onto reticulated formic lignin (RFL) from sugar cane bagasse was studied. The adsorption process is pH, temperature and ionic strength (µ) dependent and obeys the Langmuir model. Conditions for higher adsorption rate and capacity were determined. The faster adsorption (12 hours) and higher adsorption capacity (34.20 mg.g-1) were observed at pH = 5.8 (acetic acid-sodium acetate aqueous buffer), 50 ºC and 0.1 ionic strength. Under temperature (50 ºC) control and occasional mechanical stirring it took from 1 to 10 days to reach the equilibrium.
Resumo:
ABSTRACT The essay objective was to correlate lignin content resulting from tigmomorphogenesis induced by stem swaying with survival and post-planting growth of P. taeda seedlings. Seedlings were subjected to daily frequencies (0, 5, 10, 20 and 40 movements) of stem swaying for 60 days. By the end of the treatments, we determined lignin content of below and aboveground seedling tissues. Four replicates per treatment were planted in a area cultivated with pines. Ninety days after planting, survival and increments of seedling height, stem diameter and stem volume were quantified. Application of 20 stem swayings increased lignin in both below and aboveground plant tissues. Outplanted seedling survival was reduced with 40 stem swayings while growth increments were increased with both 10 and 20 stem swayings. Lignin content from belowground plant tissues was positively correlated with outplanted seedling survival while lignin from aboveground tissues correlated with height and stem volume increments. P. taeda seedlings with higher lignin content have higher survival chances after planting.
Resumo:
Lignin, after cellulose, is the second most abundant biopolymer on Earth, accounting for 30% of the organic carbon in the biosphere. It is considered an important evolutionary adaptation of plants during their transition from the aquatic environment to land, since it bestowed the early tracheophytes with physical support to stand upright and enabled long-distance transport of water and solutes by waterproofing the vascular tissue. Although essential for plant growth and development, lignin is the major plant cell wall component responsible for biomass recalcitrance to industrial processing. The fact that lignin is a non-linear aromatic polymer built with chemically diverse and poorly reactive linkages and a variety of monomer units precludes the ability of any single enzyme to properly recognize and degrade it. Consequently, the use of lignocellulosic feedstock as a renewable and sustainable resource for the production of biofuels and bio-based materials will depend on the identification and characterization of the factors that determine plant biomass recalcitrance, especially the highly complex phenolic polymer lignin. Here, we summarize the current knowledge regarding lignin metabolism in plants, its effect on biomass recalcitrance and the emergent strategies to modify biomass recalcitrance through metabolic engineering of the lignin pathway. In addition, the potential use of sugarcane as a second-generation biofuel crop and the advances in lignin-related studies in sugarcane are discussed.
Resumo:
Over a 15-year period, our university-based laboratory obtained 125 adrenal tumors, of which 15 (12%) were adrenal cortical carcinomas. Of these, 6 (40% of the carcinomas) occurred in patients with clear clinical manifestations of steroid hormone excess. Adrenal cortical carcinoma cells derived from the surgically resected tumors in 4 of these patients were isolated and established in primary culture. Radiotracer steroid interconversion studies were carried out with these cultures and also on mitochondria isolated from homogenized tissues. Large tumors had the lowest steroidogenic activities per weight, whereas small tumors had more moderately depressed enzyme activities relative to cells from normal glands. In incubations with pregnenolone as substrate, 1 mM metyrapone blocked the synthesis of corticosterone and cortisol and also the formation of aldosterone. Metyrapone inhibition was associated with a concomitant increase in the formation of androgens (androstenedione and testosterone) from pregnenolone. Administration of metyrapone in vivo before surgery in one patient resulted in a similar increase in plasma androstenedione, though plasma testosterone levels were not significantly affected. In cultures of two of four tumors examined, dibutyryl cAMP stimulated 11ß-hydroxylase activity modestly; ACTH also had a significant stimulatory effect in one of these tumors. Unlike results obtained with normal or adenomatous adrenal cortical tissues, mitochondria from carcinomatous cells showed a lack of support of either cholesterol side-chain cleavage enzyme complex or steroid 11ß-hydroxylase activity by Krebs cycle intermediates (10 mM isocitrate, succinate or malate). This finding is consistent with the concept that these carcinomas may tend to function predominantly in an anaerobic manner, rather than through the oxidation of Krebs cycle intermediates.
Resumo:
Hyaluronan is an important connective tissue glycosaminoglycan. Elevated hyaluronan biosynthesis is a common feature during tissue remodeling under both physiological and pathological conditions. Through its interactions with hyaladherins, hyaluronan affects several cellular functions such as cell migration and differentiation. The activities of hyaluronan-synthesizing and -degrading enzymes have been shown to be regulated in response to growth factors. During tumor progression hyaluronan stimulates tumor cell growth and invasiveness. Thus, elucidation of the molecular mechanisms which regulate the activities of hyaluronan-synthesizing and -degrading enzymes during tumor progression is highly desired.
Resumo:
Breeding soybean for high seed quality is an important approach for developing cultivars for tropical regions, and the lignin content in the seed coat is one of the screening parameters for this trait. Considering that many breeding lines are evaluated in each growing season using the presently recommended method for lignin determination, a long period is required for the evaluation of the whole breeding program. This time limitation may influence lignin content assessment, if lignin is degraded during storage. This research reported was designed to determine whether lignin was degraded in the seed coat of soybean seed cultivars stored for one year in a controlled environment (10°C temperature and 50% air relative humidity). Seeds of 12 selected soybean cultivars that had a range in seed coat lignin content were evaluated. Seeds were hand harvested just after physiological maturity and evaluated for seed coat lignin content at harvest and after one year of storage in a cold room (10°C and 50% RH). The lignin content in seed coats differed significantly among cultivars in both analyses, but for both results the sequence of cultivar classification and the lignin content values of each cultivar did not change. A regression analysis of lignin content at harvest and after one year of storage indicated a direct relationship between both lignin determinations suggesting no differences between the lignin content of each cultivar due to prolonged storage (r² = 0.98***). This indicates that the lignin determination in the soybean seed coat can be performed over a long time period without any bias due to change in its content.
Resumo:
Seed quality may be affected by several factors, including permeability, color, and lignin content in the seed coat. This study aimed at evaluating influence of lignin content in the tegument of seed samples of six different soybean cultivars, in which half of each sample was inoculated with the fungus Aspergillus flavus, on the physical and physiological quality, and on the seed health, during 180 days storage period, under cold chamber with controlled conditions of temperature and RH. For that, at each interval of 60 days, samples were removed, and the physiological quality of these seeds was assessed by means of moisture and lignin contents; and by tests of seed health, germination, and electrical conductivity. The moisture content of seeds remained constant during all storage period. In the seed health test, it was found that inoculation was efficient, once the minimum incidence of the fungus in the inoculated seeds was 85%. In the germination test, there was a trend of reduction on percentage germination with the increase in storage period. However, there was an increase on electrical conductivity of seeds assessed. It was concluded that there is no interference of the lignin content in the seed coat on the resistance to infection by the fungus Aspergillus flavus, even after seed storage for a period of 180 days.
Resumo:
Differences in levels of lignin in the plant between conventional and transgenic cultivars RR has been reported by several authors, however, there are few studies evaluating the influence of spraying of glyphosate on the lignin in the plant and RR soybean seeds. The aim of this study was to evaluate the physiological quality of RR transgenic soybean seeds and the lignin contents of plants sprayed with the herbicide glyphosate. The assays were conducted both in greenhouse and field in the municipality of Lavras, MG, in the agricultural year 2007/08. The experiment was arranged in a splitplot design with four replicates, considering the treatments hand weeding and herbicide glyphosate as plots, and five RR soybean cultivars (BRS 245 RR, BRS 247 RR, Valiosa RR, Silvânia RR and Baliza RR) as splitplots. In the greenhouse, the cultivars tested were BRS 245 RR and Valiosa RR in a randomized block design with four replicates. The sprayings were carried out at stages V3, V7 and early R5 (3L/ha). The 1000 seed weight, mechanical injury, germination and germination velocity index, emergence velocity index, accelerated aging, electrical conductivity and water soaking seed test, lignin content in the seed coat, in the stem and legumes were determined. The spraying of glyphosate herbicide, in greenhouse and field, did not alter the physiological quality of seeds and the lignin contents in the plant.
Resumo:
ABSTRACT The objective of this work was to evaluate the dynamics of decomposition process of chopped secondary forest system, previously enriched with legumes Inga velutina Willd. and Stryphnodendron pulcherrimum (Willd.) Hochr. and the contribution of this process to the nutrient input to the cultivation of corn and bean under no-tillage. The experimental design was a randomized block, split plot with four replications. The plots were two species (I. velutina and S. pulcherrimum) and the subplots were seven times of evaluation (0, 7, 28, 63, 189, 252, 294 days after experiment installation). There was no difference (p ≥ 0.05) between the secondary forest systems enriched and no interaction with times for biomass waste, decomposition constant and half-life time. The waste of S. pulcherrimum trees had higher (p < 0.05) C/N ratio than that I. velutina. However, this one was higher (p < 0.05) in lignin content. Nevertheless, the dynamics of residue decomposition was similar. The corn yield was higher (p < 0.05) in cultivation under I.velutina waste. Meanwhile, the beans planted after corn, shows similar (p > 0.05) yield in both areas, regardless of the waste origin.