31 resultados para lightning location system
em Scielo Saúde Pública - SP
Resumo:
A relation between a rice irrigation system and mosquito breeding was established in a study undertaken at the Ribeira Valley Experimental Station, from January through December 1992. Flooding favoured Anopheles (Nyssorhynchus) and Culex (Melanoconion) species, while empty paddies condition were propitious to Aedes scapularis and Culex (Culex) species. Compared with a more primitive area of the same region, several species showed high a degree of adaptation to the anthropic environment. Among them, Anopheles albitarsis, a potential malaria vector that breeds in the irrigation system, has shown immature stage production thirteen times higher than at the natural breeding sites. In addition, Ae. scapularis, An. oswaldoi, Cx. bastagarius, and Cx. chidesteri presented high levels of synanthropy.
Resumo:
Specimens of Spinitectus osorioi Choudhury and Pérez-Ponce de León, an intestinal nematode species previously considered to be specific to Chirostoma spp and endemic to some lakes in the Pacific drainage in Michoacán, were collected from the freshwater fish Atherinella alvarezi (Díaz-Pardo) (Atherinopsidae) of the Michol River near Palenque, Chiapas, Southern Mexico, which belongs to the Atlantic drainage system. Studies using light and scanning electron microscopy revealed some taxonomically important, previously unreported or erroneously reported features of S. osorioi, such as the location of the vulva, the actual number and distribution of postanal papillae and phasmids and the presence of a short median cuticular ridge anterior to the cloacal opening (in addition to two long subventral ridges). The recorded somewhat shorter spicules (420-465 and 105-111 μm) and mostly smaller eggs (33-36 × 18-20 μm) as compared to the original species description may be due to a different type of host, geographical region or generally smaller body measurements of these specimens. These biometrical differences are considered to be within the limits of the intraspecific variability of S. osorioi. A key to species of Spinitectus parasitizing freshwater fishes in Mexico is provided.
Resumo:
The protective effect of cations, especially Ca and Mg, against aluminum (Al) rhizotoxicity has been extensively investigated in the last decades. The mechanisms by which the process occurs are however only beginning to be elucidated. Six experiments were carried out here to characterize the protective effect of Mg application in relation to timing, location and crop specificity: Experiment 1 - Protective effect of Mg compared to Ca; Experiment 2 - Protective effect of Mg on distinct root classes of 15 soybean genotypes; Experiment 3 - Effect of timing of Mg supply on the response of soybean cvs. to Al; Experiment 4 - Investigating whether the Mg protective effect is apoplastic or simplastic using a split-root system; Experiment 5 - Protective effect of Mg supplied in solution or foliar spraying, and Experiment 6 - Protective effect of Mg on Al rhizotoxicity in other crops. It was found that the addition of 50 mmol L-1 Mg to solutions containing toxic Al increased Al tolerance in 15 soybean cultivars. This caused soybean cultivars known as Al-sensitive to behave as if they were tolerant. The protective action of Mg seems to require constant Mg supply in the external medium. Supplying Mg up to 6 h after root exposition to Al was sufficient to maintain normal soybean root growth, but root growth was not recovered by Mg addition 12 h after Al treatments. Mg application to half of the root system not exposed to Al was not sufficient to prevent Al toxicity on the other half exposed to Al without Mg in rooting medium, indicating the existence of an external protection mechanism of Mg. Foliar spraying with Mg also failed to decrease Al toxicity, indicating a possible apoplastic role of Mg. The protective effect of Mg appeared to be soybean-specific since Mg supply did not substantially improve root elongation in sorghum, wheat, corn, cotton, rice, or snap bean when grown in the presence of toxic Al concentrations.
Resumo:
ABSTRACT Understanding the spatial behavior of soil physical properties under no-tillage system (NT) is required for the adoption and maintenance of a sustainable soil management system. The aims of this study were to quantify soil bulk density (BD), porosity in the soil macropore domain (PORp) and in the soil matrix domain (PORm), air capacity in the soil matrix (ACm), field capacity (FC), and soil water storage capacity (FC/TP) in the row (R), interrow (IR), and intermediate position between R and IR (designated IP) in the 0.0-0.10 and 0.10-0.20 m soil layers under NT; and to verify if these soil properties have systematic variation in sampling positions related to rows and interrows of corn. Soil sampling was carried out in transect perpendicular to the corn rows in which 40 sampling points were selected at each position (R, IR, IP) and in each soil layer, obtaining undisturbed samples to determine the aforementioned soil physical properties. The influence of sampling position on systematic variation of soil physical properties was evaluated by spectral analysis. In the 0.0-0.1 m layer, tilling the crop rows at the time of planting led to differences in BD, PORp, ACm, FC and FC/TP only in the R position. In the R position, the FC/TP ratio was considered close to ideal (0.66), indicating good water and air availability at this sampling position. The R position also showed BD values lower than the critical bulk density that restricts root growth, suggesting good soil physical conditions for seed germination and plant establishment. Spectral analysis indicated that there was systematic variation in soil physical properties evaluated in the 0.0-0.1 m layer, except for PORm. These results indicated that the soil physical properties evaluated in the 0.0-0.1 m layer were associated with soil position in the rows and interrows of corn. Thus, proper assessment of soil physical properties under NT must take into consideration the sampling positions and previous location of crop rows and interrows.
Resumo:
Abstract Objective: To analyze the prevalence of anatomical variations of celiac arterial trunk (CAT) branches and hepatic arterial system (HAS), as well as the CAT diameter, length and distance to the superior mesenteric artery. Materials and Methods: Retrospective, cross-sectional and predominantly descriptive study based on the analysis of multidetector computed tomography images of 60 patients. Results: The celiac trunk anatomy was normal in 90% of cases. Hepatosplenic trunk was found in 8.3% of patients, and hepatogastric trunk in 1.7%. Variation of the HAS was observed in 21.7% of cases, including anomalous location of the right hepatic artery in 8.3% of cases, and of the left hepatic artery, in 5%. Also, cases of joint relocation of right and left hepatic arteries, and trifurcation of the proper hepatic artery were observed, respectively, in 3 (5%) and 2 (3.3%) patients. Mean length and caliber of the CAT were 2.3 cm and 0.8 cm, respectively. Mean distance between CAT and superior mesenteric artery was 1.2 cm (standard deviation = 4.08). A significant correlation was observed between CAT diameter and length, and CAT diameter and distance to superior mesenteric artery. Conclusion: The pattern of CAT variations and diameter corroborate the majority of the literature data. However, this does not happen in relation to the HAS.
Warning system based on theoretical-experimental study of dispersion of soluble pollutants in rivers
Resumo:
Information about capacity of transport and dispersion of soluble pollutants in natural streams are important in the management of water resources, especially in planning preventive measures to minimize the problems caused by accidental or intentional waste, in public health and economic activities that depend on the use of water. Considering this importance, this study aimed to develop a warning system for rivers, based on experimental techniques using tracers and analytical equations of one-dimensional transport of soluble pollutants conservative, to subsidizing the decision-making in the management of water resources. The system was development in JAVA programming language and MySQL database can predict the travel time of pollutants clouds from a point of eviction and graphically displays the temporal distribution of concentrations of passage clouds, in a particular location, downstream from the point of its launch.
Resumo:
Invertebrate glial cells show a variety of morphologies depending on species and location. They have been classified according to relatively general morphological or functional criteria and also to their location. The present study was carried out to characterize the organization of glial cells and their processes in the zona fasciculata and in the protocerebral tract of the crab Ucides cordatus. We performed routine and cytochemical procedures for electron microscopy analysis. Semithin sections were observed at the light microscope. The Thiéry procedure indicated the presence of carbohydrates, particularly glycogen, in tissue and in cells. To better visualize the axonal ensheathment at the ultrastructural level, we employed a method to enhance the unsaturated fatty acids present in membranes. Our results showed that there are at least two types of glial cells in these nervous structures, a light one and a dark one. Most of the dark cell processes have been mentioned in the literature as extracellular matrix, but since they presented an enveloping membrane, glycogen and mitochondria - intact and with different degrees of disruption - they were considered to be glial cells in the present study. We assume that they correspond to the perineurial cells on the basis of their location. The light cells must correspond to the periaxonal cells. Some characteristics of the axons such as their organization, ensheathment and subcellular structures are also described.
Resumo:
In the last five years, climate change has been established as a central civilizational driver of our time. As a result of this development, the most diversified social processes - as well as the fields of science which study them - have had their dynamics altered. In International Relations, this double challenge could be explained as follows: 1) in empirical terms, climate change imposes a deepening of cooperation levels on the international community, considering the global common character of the atmosphere; and 2) to International Relations as a discipline, climate change demands from the scientific community a conceptual review of the categories designed to approach the development of global climate governance. The goal of this article is to discuss in both conceptual and empirical terms the structure of global climate change governance, through an exploratory research, aiming at identifying the key elements that allow understanding its dynamics. To do so, we rely on the concept of climate powers. This discussion is grounded in the following framework: we now live in an international system under conservative hegemony that is unable to properly respond to the problems of interdependence, among which - and mainly -, the climate issue.
Resumo:
Utilizing China's leadership projects in the Great Mekong Sub-Region (GMS) as a case study, this paper aims to investigate whether China qualifies as an international leader. This work argues that its geographic position and economic rise allow China to be a "system maker and privilege taker," which is a dual role forming in economic-political relations in the GMS in the last ten years. China is among major driving forces to set up an economic zone in GMS. Growing Chinese regional power is intimately related to the creation of various hubs connecting regional transportation, communication and energy systems that foster the economic development of this region. However, China also proves dark sides of rising powers which take advantage of their privileges to gain benefits. As a "system maker" with its own position and capability, China has notably benefited from building hydropower systems. More importantly, while China is pursuing its benefits and privileges, its hydropower projects have caused some negative effects for the ecosystem in the region. The inflation of dam constructions in both China and GMS countries is raising concerns about using natural resources of the Mekong River. Our concluding part addresses the pressing need to start a serious discussion on the balance between national interests and regional solidarity within the formulation of Chinese foreign policy in GMS.
Resumo:
Is it possible to talk about the rise of a new global (dis)order founded on the challenges posed by environmental issues? Through the review of the state of the art on the subject, this article analyzes the growing importance of the environment, and natural resources in particular, in international relations; and aims to raise awareness among International Relations scholars to the potential positive impact of the development of the discipline in integration with global environmental change studies.
Resumo:
The increased preference for minimally processed vegetables has been attributed to the health benefits associated with fresh produce and the demand for ready-to-eat salads. In this paper, lettuce (Lactuca sativa L.) was evaluated for the effects of different cropping systems on the respiratory properties. Lettuce was packaged in low density polyethylene bags and stored in a refrigerator at 4 ºC. The concentration of carbon dioxide and oxygen inside the package was monitored during the storage at zero, three, six, eight, ten and twelve days by gas chromatography. Dry matter variation was measured gravimetrically up to day fourteen of storage. Values of respiratory rate for conventional lettuce increased from day 1 to 3 and remained low, while respiratory rate of the organic lettuce increased three-fold up to day 8, stabilizing at a high level. Variation in dry matter during storage also resulted from differences between the two cultivation systems. The highest content of dry matter was achieved by organic lettuce.
Resumo:
Fertilizer recommendation to most agricultural crops is based on response curves. Such curves are constructed from field experimental data, obtained for a particular condition and may not be reliable to be applied to other regions. The aim of this study was to develop a Lime and Fertilizer Recommendation System for Coconut Crop based on the nutritional balance. The System considers the expected productivity and plant nutrient use efficiency to estimate nutrient demand, and effective rooting layer, soil nutrient availability, as well as any other nutrient input to estimate the nutrient supply. Comparing the nutrient demand with the nutrient supply the System defines the nutrient balance. If the balance for a given nutrient is negative, lime and, or, fertilization is recommended. On the other hand, if the balance is positive, no lime or fertilizer is needed. For coconut trees, the fertilization regime is divided in three stages: fertilization at the planting spot, band fertilization and fertilization at the production phase. The data set for the development of the System for coconut trees was obtained from the literature. The recommendations generated by the System were compared to those derived from recommendation tables used for coconut crop in Brazil. The main differences between the two procedures were for the P rate applied in the planting hole, which was higher in the proposed System because the tables do not pay heed to the pit volume, whereas the N and K rates were lower. The crop demand for K is very high, and the rates recommended by the System are superior to the table recommendations for the formation and initial production stage. The fertilizer recommendations by the System are higher for the phase of coconut tree growth as compared to the production phase, because greater amount of biomass is produced in the first phase.
Resumo:
The objective of this work was to evaluate the quality of fruits and the nutritional status of cucumber CV. Aodai cultivated in nutrient solutions with different N:K ratios. The hydroponic cultivation was initially performed, during the vegetative growth, in nutrient solution with 1:2.0 mmol L-1 N:K, and, later, during fruit setting, in four different nutrient solutions with N:K (w/w) at the ratios 1:1.4, 1:1.7, 1:2.0 and 1:2.5. An additional treatment with a nutrient solution containing the ratio 1:2.2 (w/w) N:K during the vegetative growth and N:K 1:1.4 (w/w) during fruit setting, both with 10% ammonium (NH4+) was included. The treatments were arranged in a randomized design with six replicates. Irrigation was carried out with deionized water until seed germination, and then with nutrient solution until 30 days after germination, when plants were transplanted. Plants in the hydroponic growing beds were irrigated with the solutions for vegetative growth, and, after 21 days, the solutions were replaced by solutions for fruit setting. At 45 and 60 days after transplanting, the fresh weight, length, diameter, volume and firmness of the fruit were evaluated, and, at 45 days after transplanting, the macronutrient concentrations in the leaves were determined. The use of different N:K ratios during fruit setting influenced the cucumber production. The ratio of 1.0:1.7 N: K (w/w), with 10% of N in the form of ammonia, is recommended for the whole cycle.
Resumo:
Morphological characterization and aggregate stability is an important factor in evaluating management systems. The aim of this paper is to evaluate the stability and morphology of the aggregates of a dystrophic Oxisol managed with no-tillage and conventional tillage with and without the residual action of gypsum. The experimental design was randomized blocks arranged in split-split plot, where the treatments were two soil management systems (plots) with 0 and 2000 kg ha-1 of gypsum (subplots) and five depths (0-0.05, 0.05-0.10, 0.10-0.15, 0.15-0.20 and 0.20-0.30 m) as the subsubplots, with four replications. The aggregate morphology was determined through images and later evaluated by the Quantporo software. Stability was determined by the wet method. The results showed that the no-tillage system, with or without gypsum residual effect, provided the aggregates with the largest geometric diameters. The combination of no-tillage system and the gypsum residual effect provided rougher aggregates.