50 resultados para lighting poles
em Scielo Saúde Pública - SP
Resumo:
To determine in influence of feeding, lighting and time of day on the copulating behavior of Panstrongylus megistus, 480 insect pairs were divided into four groups of 120 each and tested in the following respective situations: without food deprivation (F.D.), with five days of F.D., with ten days of F.D., and with 20 days of F. D. The tests were performed between 9:00 a.m. to 12:00a.m. and 7:00 p.m. to 10:00 p.m., with light (700-1400 lux) and in the dark (1.4-2.8 lux) and behavior was recorded by the time sampling technique. Mating spped (MS) and duration of copulation (DC) were also calculated for each situation. The maximum frequency of copulation was observed after five days of F.D., at night, in the dark (n = 16), and the minimum was observed for recently-fed pairs, at night, with light (n = 4). Males approached females more often than females approached males. MS was lowest in pairs with twenty days of F.D., at night, with light (X = 23.0 ± 16.0 minutes), and highest in recently-fed pairs, during the day, with light (X = 2.9 ± 2.5 minutes). DC was shortest in recently-fed insects, during the day, in the dark (X = 23.5 ± 6.7 minutes), and longest in recently-fed animals, at night, in the dark (X = 38.3 ± 6.9 minutes).
Resumo:
Abstract:The objective of this work was to evaluate the effect of limestone particle sizes in the diet and of lighting regimes on the egg and bone quality and on the performance of commercial laying hens. Three hundred Hissex White layers, at 18 weeks of age, were distributed in a completely randomized design, in a 5×2 factorial arrangement (coarse limestone in the diet at 0, 25, 50, 75, and 100%; with or without artificial light), with five replicates of six birds. No significant interaction was observed between particle sizes and lighting regime for the evaluated parameters. There was no significant effect of coarse limestone level in the diet on the performance and egg quality of hens; however, bone deformity (3.23 to 4.01 mm), strength (5.19 to 6.70 kgf cm-2), and mineral matter (51.09 to 59.61%) improved as the proportion of coarse limestone increased. For lighting regime, the treatment with artificial light yielded higher Haugh unit values (87.17 vs. 85.54) than that with natural light only. Greater limestone particles improve bone quality of laying hens, and the use of artificial light can benefit the albumen quality of the eggs.
Resumo:
In São Paulo State, mainly in rural areas, the utilization of wooden poles is observed for different purposes. In this context, wood in contact with the ground presents faster deterioration, which is generally associated to environmental factors and, especially to the presence of fungi and insects. With the use of mathematical models, the useful life of wooden structures can be predicted by obtaining "climatic indexes" to indicate, comparatively among the areas studied, which have more or less tendency to fungi and insects attacks. In this work, by using climatological data of several cities at São Paulo State, a simplified mathematical model was obtained to measure the aggressiveness of the wood in contact with the soil.
Resumo:
The type of artificial light used for inducing photoperiod effect in begonia's seedlings at greenhouse has fundamental importance in the growth and development of these plants and directly reflects in the electrical energy consumption used in this production process. The objective of this research was to analyze the technical and economic feasibility of replacing the current technology of artificial lighting used by the producers (incandescent lamps), by the technology of discharge lamps with the purpose of inducing photoperiod in a greenhouse. The analysis results indicate that the discharge lamp of 32 W Tubular Fluorescent discharge lamp was the one that presented the lower peak demand and lower average energy consumption of 85.01% compared to incandescent filament lamp of 100 W that is the technology of bigger consumption and currently used by the producer.
Resumo:
Light emitting diode (LED) has been used in commercial poultry industry by presenting superior energy savings and providing feasibility on production process. The objective of this research was to evaluate performance and carcass yield of broiler chickens exposed to different LED colors compared with fluorescent lamps. For that, two experiments (E1 and E2) were performed and 2,646 Cobb® chickens were used. In experiment E1, male birds were exposed to 20 lux artificial lighting with red, yellow, blue, and white LED bulbs; and fluorescent bulb. In experiment E2, male and female birds were exposed to 15 lux artificial lighting with red and blue LED bulbs; and fluorescent bulb. Cumulative weight gain (kg), feed intake (kg), feed conversion, hot carcass weight (kg), carcass yield (%), and breast and thigh + drumstick yield (%) were used as response variables. Results showed no difference (p > 0.05) among treatments for performance, carcass yield, and cut yield in experiment E1. In experiment E2 there was only difference between genders (p < 0.05) and males showed higher total weight gain, feed intake, hot carcass weight and thigh + drumstick yield. Different LED color use had same effect as fluorescent lights on broiler performance and carcass yield.
Resumo:
ABSTRACT Broiler poultry is highly dependent on artificial lightening. Power consumption costs of artificial lighting systems is the second largest expense related to broiler industry, second only to feed expenses. Therefore, the current study focused to analyze technical and economic feasibility of replacing incandescent lamps already used in aviaries with other lamp types. Costs related to power consumption, implementation and maintenance of the lighting systems were evaluated with the aid of financial mathematics using net present value, return over investment and payback. Systems composed of six lamp types were analyzed in two different configurations to meet the minimum illuminance of 5 and 20 lux and for use in conventional sheds and dark house. The lamps tested were incandescent (LI) of 100 W, compact fluorescent (CFL) of 34 W, mixed (ML) 160 W sodium vapor (SVL) of 70 W, tubular fluorescent T8 (TFL T8) of 40 W and tubular fluorescent T5 (TFL T5) of 28 W. For the systems tested, it was found that the tubular fluorescent lamps T8 and T5 showed the best results of technical and economic feasibility.
Resumo:
OBJETIVO: Analisar os fluxos de viagens de crianças e adolescentes com câncer, entre os locais de residência e serviço de saúde. MÉTODOS: Foram analisados os fluxos de viagens de crianças e adolescentes com câncer entre os locais de residência e de serviço de saúde atendidos no Sistema Único de Saúde (SUS), de 2000 a 2007. A unidade de análise foi a regional de saúde. Utilizou-se o sistema de informações geográficas e metodologia de redes por tipo de tratamento recebido (quimioterapia e radioterapia) e internações hospitalares. RESULTADOS: Foram emitidas 465.289 autorizações de quimioterapia, 29.151 de radioterapia e 383.568 de internações hospitalares de crianças e adolescentes com diagnóstico de câncer para tratamento no SUS. O fluxo dominante formou 48 redes para quimioterapia, 53 para radioterapia e 112 para internações hospitalares. A maior parte do volume de atendimento ocorreu nas regionais de saúde das 12 maiores metrópoles do País com grande relacionamento entre elas e extensa área de influência direta acompanhando a estrutura da rede urbana brasileira. CONCLUSÕES: A identificação das redes estabelecidas no âmbito do SUS para o atendimento de crianças e adolescentes com câncer mostra que a maioria dos pacientes está contemplada pelas redes estruturadas. Cerca de 10% das viagens ocorrem fora do fluxo dominante, indicando a necessidade de regionalização alternativa. Os resultados evidenciam a importância do planejamento da distribuição dos serviços de acordo com as necessidades da população usuária.
Resumo:
ABSTRACT OBJECTIVE To analyze explanations for tuberculosis and therapeutic itineraries of Brazilian indigenous people. METHODS Case study with a qualitative-descriptive approach. We conducted semi-structured interviews with 11 Munduruku indigenous, including direct observation of treatment for tuberculosis in the municipality of Jacareacanga, south-western region of the state of Para, Brazil. To identify explanations for tuberculosis and therapeutic itineraries, we performed thematic content analysis. RESULTS Traditional medicine was the first therapeutic option chosen by the indigenous. However, biomedicine was also employed, which indicates a circulation between different therapeutic contexts and health concepts among the Munduruku. The explanations provided ranged from recognition of the signs and symptoms specific to tuberculosis to the attribution of the disease to a spirit that leaves the body and wanders in the woods, returning ill into the body. Unlike the biomedical model, which links tuberculosis transmission strictly to interpersonal contact, in closed spaces without natural lighting and ventilation (preferably domestic environments), the Munduruku associate the disease to an indirect contact between people socially distant (enemies or adversaries) in public and open places. CONCLUSIONS The explanations made by the indigenous are unique and deserve the attention of those who are responsible for developing health public policies, as well as of the teams who work on the villages. To guarantee an efficient control of tuberculosis in these regions, it is necessary that the developed actions integrate biomedicine knowledge and the traditional medicine of the indigenous people, in addition to respecting and welcoming local culture manifestations.
Resumo:
Natural regeneration and structure and their relationship to environmental variables were studied in three sections of a gallery forest, in Eastern Mato Grosso, Brazil (14º43′S and 52º21′W). The assumption was that natural regeneration is constrained by environmental determinants at all stages of development of the tree community. The objective was to analyse the forest structure and to verify the relationship between species distribution and abundance at different stages of regeneration and environmental variables. In each section, 47 contiguous (10x10m) permanent plots were established to sample trees (gbh≥15cm), following a systematic design. Seedlings (0.01 to 1m height), saplings (1.01 to 2m) and poles (from 2.01m height to gbh<15cm) were sampled in sub-plots of 1x1m, 2x2m and 5x5m, respectively. In each plot, soil properties, gaps projection, bamboos, rocky cover, declivity and depth of ground watertable were determined. The relationships between the environmental variables with trees and seedling communities were assessed by canonical correspondence analysis. In spite of the sections being near to each other, they presented large differences in floristics, structure and site conditions. The forest soil presented a low cation exchange capacity and a high level of Al saturation. The occurrence of bamboos and gaps and the depth of ground watertable limited the occurrence of poles and trees. The high degree of structural heterogeneity for each regeneration category was related primarily to a humidity gradient; but soil fertility (Ca+Mg) was also a determinant of seedling and sapling communities.
Resumo:
Orchidaceae is one of the largest botanical families, with approximately 780 genera. Among the genera of this family, Catasetum currently comprises 166 species. The aim of this study was to characterize the root anatomy of eight Catasetum species, verifying adaptations related to epiphytic habit and looking for features that could contribute to the vegetative identification of such species. The species studied were collected at the Portal da Amazônia region, Mato Grosso state, Brazil. The roots were fixed in FAA 50, cut freehand, and stained with astra blue/fuchsin. Illustrations were obtained with a digital camera mounted on a photomicroscope. The roots of examined species shared most of the anatomical characteristics observed in other species of the Catasetum genus, and many of them have adaptations to the epiphytic habit, such as presence of secondary thickening in the velamen cell walls, exodermis, cortex, and medulla. Some specific features were recognized as having taxonomic application, such as composition of the thickening of velamen cell walls, ornamentation of absorbent root-hair walls, presence of tilosomes, composition and thickening of the cortical cell walls, presence of mycorrhizae, endodermal cell wall thickening, the number of protoxylem poles, and composition and thickening of the central area of the vascular cylinder. These traits are important anatomical markers to separate the species within the genus and to generate a dichotomous identification key for Catasetum. Thus, providing a useful tool for taxonomists of this group
Resumo:
A more or less detailed study of the spermatogenesis in six species of Hemiptera belonging to the Coreid Family is made in the present paper. The species studied and their respective chromosome numbers were: 1) Diactor bilineatus (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationaliv in the first division and passing undivided to one pole in the second. 2) Lcptoglossus gonagra (Fabr.) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 3) Phthia picta (Drury) : spermatogonia with 20 + X, primary spermatocytes with 10 + X, X dividing equationally in the first division and passing undivided to one pole in the second. 4) Anisocelis foliacea Fabr. : spermatogonia with 26 + X fthe highest mumber hitherto known in the Family), primary .spermatocytes with 13 + X, X dividing equationally in the first division an passing undivided to one pole in the second. 5) Pachylis pharaonis (Herbtst) : spermatogonia with 16 + X, primary spermatocytes with 8 + X. Behaviour of the heteroehromosome not referred. 6) Pachylis laticornis (Fabr.) : spermatogonia with 14 + X, primary spermatocytes with 7 + X, X passing undivided to one pole in the first division and therefore secondary spermatocytes with 7 + X and 7 chromosomes. General results and conclusions a) Pairing modus of the chromosomes (Telosynapsis or Farasynapsis ?) - In several species of the Coreld bugs the history of the chromosomes from the diffuse stage till diakinesis cannot be follewed in detail due specially to the fact that lhe bivalents, as soon as they begin to be individually distinct they appear as irregular and extremely lax chromatic areas, which through an obscure process give rise to the diakinesis and then to the metaphase chomosomes. Fortunately I was able to analyse the genesis of the cross-shaped chromosomes, becoming thus convinced that even in the less favorable cases like that of Phthia, in which the crosses develop from four small condensation areas of the diffuse chromosomes, nothing in the process permit to interpret the final results as being due to a previous telosynaptic pairing. In the case of long bivalents formed by two parallel strands intimately united at both endsegments and more or less widely open in the middle (Leptoglossus, Pachylis), I could see that the lateral arms of the crosses originate from condensation centers created by a torsion or bending in the unpaired parts of the chromosomes In the relatively short bivalents the lateral branches of the cross are formed in the middle but in the long ones, whose median opening is sometimes considerable, two asymetrical branches or even two independent crosses may develop in the same pair. These observations put away the idea of an end-to-end pairing of the chromosomes, since if it had occured the lateral arms of the crosses would always be symetrical and median and never more than two. The direct observation of a side- toside pairing of the chromosomal threads at synizesis, is in foil agreement with the complete lack of evidence in favour of telosynapsis. b) Anaphasic bridges and interzonal connections - The chromosomes as they separate from each other in anaphase they remain connected by means of two lateral strands corresponding to the unpaired segmenas observed in the bivalents at the stages preceding metaphase. In the early anaphase the chromosomes again reproduce the form they had in late diafcinesis. The connecting threads which may be thick and intensely coloured are generally curved and sometimes unequal in lenght, one being much longer than the other and forming a loop outwardly. This fact points to a continuous flow of chromosomal substance independently from both chromosomes of the pair rather than to a mechanical stretching of a sticky substance. At the end of anaphase almost all the material which formed the bridges is reduced to two small cones from whose vertices a very fine and pale fibril takes its origin. The interzonal fibres, therefore, may be considered as the remnant of the anaphasic bridges. Abnormal behaviour of the anaphase chromosomes showed to be useful in aiding the interpretation of normal aspects. It has been suggested by Schrader (1944) "that the interzonal is nothing more than a sticky coating of the chromosome which is stretched like mucilage between the daughter chromosomes as they move further and further apart". The paired chromosomes being enclosed in a commom sheath, as they separate they give origin to a tube which becomes more and more stretched. Later the walls of the tube collapse forming in this manner an interzonal element. My observations, however, do not confirm Schrader's tubular theory of interzonal connections. In the aspects seen at anaphase of the primary spermatocytes and described in this paper as chromosomal bridges nothing suggests a tubular structure. There is no doubt that the chromosomes are here connected by two independent strands in the first division of the spermatocytes and by a single one in the second. The manner in which the chromosomes separate supports the idea of transverse divion, leaving little place for another interpretation. c) Ptafanoeomc and chromatoid bodies - The colourabtlity of the plasmosome in Diactor and Anisocelis showed to be highly variable. In the latter species, one may find in the same cyst nuclei provided with two intensely coloured bodies, the larger of which being the plasmosome, sided by those in which only the heterochromosome took the colour. In the former one the plasmosome strongly coloured seen in the primary metaphase may easily be taken for a supernumerary chromosome. At anaphase this body stays motionless in the equator of the cell while the chromosomes are moving toward the poles. There, when intensely coloured ,it may be confused with the heterochromosome of the secondary spermatocytes, which frequently occupies identical position in the corresponding phase, thus causing missinterpretation. In its place the plasmosome may divide into two equal parts or pass undivided to one cell in whose cytoplasm it breaks down giving rise to a few corpuscles of unequal sizes. In Pachylis pharaonis, as soon as the nuclear membrane breate down, the plasmosome migrates to a place in the periphery of the cell (primary spermatocyte), forming there a large chromatoid body. This body is never found in the cytoplasm prior to the dissolution of the nuclear membrane. It is certain that chromatoid bodies of different origin do exist. Here, however, we are dealing, undoubtedly, with true plasmosomes. d) Movement of the heterochromosome - The heterochromosome in the metaphase of the secondary spermatocytes may occupy the most different places. At the time the autosomes prient themselves in the equatorial plane it may be found some distance apart in this plane or in any other plane and even in the subpolar and polar regions. It remains in its place during anaphase. Therefore, it may appear at the same level with the components of one of the anaphase plates (synchronism), between both plates (succession) or between one plate and tbe pole (precession), what depends upon the moment the cell was fixed. This does not mean that the heterochromosome sometimes moves as quickly as the autosomes, sometimes more rapidly and sometimes less. It implies, on the contrary, that, being anywhere in the cell, the heterochromosome m he attained and passed by the autosomes. In spite of being almost motionless the heterochromosome finishes by being enclosed in one of the resulting nuclei. Consequently, it does move rapidly toward the group formed by the autosomes a little before anaphase is ended. This may be understood assuming that the heterochromosome, which do not divide, having almost inactive kinetochore cannot orient itself, giving from wherever it stays, only a weak response to the polar influences. When in the equator it probably do not perform any movement in virtue of receiving equal solicitation from both poles. When in any other plane, despite the greater influence of the nearer pole, the influence of the opposite pole would permit only so a slow movement that the autosomes would soon reach it and then leave it behind. It is only when the cell begins to divide that the heterochromosome, passing to one of the daughter cells scapes the influence of the other and thence goes quickly to join the autosomes, being enclosed with them in the nucleus formed there. The exceptions observed by BORING (1907) together with ; the facts described here must represent the normal behavior of the heterocromosome of the Hemiptera, the greater frequency of succession being the consequence of the more frequent localization of the heterochromosome in the equatorial plane or in its near and of the anaphase rapidity. Due to its position in metaphase the heterochromosome in early anaphase may be found in precession. In late anaphase, oh the contrary ,it appears almost always in succession. This is attributed to the fact of the heterochromosome being ordinairily localized outside the spindle area it leaves the way free to the anaphasic plate moving toward the pole. Moreover, the heterochromosome being a round element approximately of the size of the autosomes, which are equally round or a little longer in the direction of the movement, it can be passed by the autosomes even when it stands in the area of the spindle, specially if it is not too far from the equatorial plane. e) The kinetochore - This question has been fully discussed in another paper (PIZA 1943a). The facts treated here point to the conclusion that the chromosomes of the Coreidae, like those of Tityus bahiensis, are provided with a kinetochore at each end, as was already admitted by the present writer with regard to the heterochromosome of Protenor. Indeed, taking ipr granted the facts presented in this paper, other cannot be the interpretation. However, the reasons by which the chromosomes of the species studied here do not orient themselves at metaphase of the first division in the same way as the heterochromosome of Protenor, that is, with the major axis parallelly to the equatorial plane, are claiming for explanation. But, admiting that the proximity of the kinetochores at the ends of chromosomes which do not separate until the second division making them respond to the poles as if they were a single kinetochore ,the explanation follows. (See PIZA 1943a). The median opening of the diplonemas when they are going to the diffuse stage as well as the reappearance of the bivalents always united at the end-segments and open in the middle is in full agreement with the existence of two terminal kinetochores. The same can be said with regard to the bivalents which join their extremities to form a ring.
Resumo:
In the present paper the behavior of the heterochromoso-mes in the course of the meiotic divisions of the spermatocytes in 15 species of Orthoptera belonging to 6 different families was studied. The species treated and their respective chromosome numbers were: Phaneropteridae: Anaulacomera sp. - 1 - 2n = 30 + X, n +15+ X and 15. Anaulacomera sp. - 2 - 2n - 30 + X, n = 15+ X and 15. Stilpnochlora marginella - 2n = 30 + X, n = 15= X and 15. Scudderia sp. - 2n = 30 + X, n = 15+ X and 15. Posldippus citrifolius - 2n = 24 + X, n = 12+X and 12. Acrididae: Osmilia violacea - 2n = 22+X, n = 11 + X and 11. Tropinotus discoideus - 2n = 22+ X, n = 11 + X and 11. Leptysma dorsalis - 2n = 22 + X, n = 11-J-X and 11. Orphulella punctata - 2n = 22-f X, n = 11 + X and 11. Conocephalidae: Conocephalus sp. - 2n = 32 + X, n = 16 + X and 16. Proscopiidae: Cephalocoema zilkari - 2n = 16 + X, n = 8+ X and 8. Tetanorhynchus mendesi - 2n = 16 + X, n = 8+X and 8. Gryliidae: Gryllus assimilis - 2n = 28 + X, n = 14+X and 14. Gryllodes sp. - 2n = 20 + X, n = 10- + and 10. Phalangopsitidae: Endecous cavernicola - 2n = 18 +X, n = 94-X and 9. It was pointed out by the present writer that in the Orthoptera similarly to what he observed in the Hemiptera the heterochromosome in the heterocinetic division shows in the same individual indifferently precession, synchronism or succession. This lack of specificity is therefore pointed here as constituting the rule and not the exception as formerly beleaved by the students of this problem, since it occurs in all the species referred to in the present paper and probably also m those hitherto investigated. The variability in the behavior of the heterochromosome which can have any position with regard to the autosomes even in the same follicle is attributed to the fact that being rather a stationary body it retains in anaphase the place it had in metaphase. When this place is in the equator of the cell the heterochromosome will be left behind as soon as anaphase begins (succession). When, on the contrary, laying out of this plane as generally happens (precession) it will sooner be reached (synchronism) or passed by the autosomes (succession). Due to the less kinetic activity of the heterochromosome it does not orient itself at metaphase remaining where it stands with the kinetochore looking indifferently to any direction. At the end of anaphase and sometimes earlier the heterochromosome begins to show mitotic activities revealed by the division of its body. Then, responding to the influence of the nearer pole it moves to it being enclosed with the autosomes in the nucleus formed there. The position of the heterochromosome in the cell is explained in the following manner: It is well known that the heterochromosome of the Orthoptera is always at the periphery of the nucleus, just beneath the nuclear membrane. This position may be any in regard of the axis of the dividing cell, so that if one of the poles of the spindle comes to coincide with it, the heterochromosome will appear at this pole in the metaphasic figures. If, on the other hand, the angle formed by the axis of the spindle with the ray reaching the heterochromosome increases the latter will appear in planes farther and farther apart from the nearer pole until it finishes by being in the equatorial plane. In this way it is not difficult to understand precession, synchronism or succession. In the species in which the heterochromosome is very large as it generally happens in the Phaneropteridae, the positions corresponding to precession are much more frequent. This is due to the fact that the probabilities for the heterochromosome taking an intermediary position between the equator and the poles at the time the spindle is set up are much greater than otherwise. Moreover, standing always outside the spindle area it searches for a place exactly where this area is larger, that is, in the vicinity of the poles. If it comes to enter the spindle area, what has very little probability, it would be, in virtue of its size, propelled toward the pole by the nearing anaphasic plate. The cases of succession are justly those in which the heterochromosome taking a position parallelly to the spindle axis it can adjust its large body also in the equator or in its proximity. In the species provided with small heterochromosome (Gryllidae, Conocephalidae, Acrididae) succession is found much more frequently because here as in the Hemiptera (PIZA 1945) the heterochromosome can equally take equatorial or subequatorial positions, and, furthermore, when in the spindle area it does offer no sereous obstacle to the passage of the autosomes. The position of the heterochromosome at the periphery of the nucleus at different stages may be as I suppose, at least in part a question of density. The less colourability and the surface irregularities characteristic of this element may well correspond to a less degree of condensation which may influence passive movements. In one of the species studied here (Anaulacomera sp.- 1) included in the Phaneropteridae it was observed that the plasmosome is left motionless in the spindle as the autosomes move toward the poles. It passes to one of the secondary spermatocytes being not included in its nucleus. In the second division it again passes to one of the cells being cast off when the spermatid is being transformed into spermatozoon. Thus it is regularly found among the tails of the spermatozoa in different stages of development. In the opinion of the present writer, at least in some cases, corpuscles described as Golgi body's remanents are nothing more than discarded plasmosomes.
Resumo:
In this paper an account is given of the principal facts observer in the meiosis of Euryophthalmus rufipennis Laporte which afford some evidence in favour of the view held by the present writer in earlier publications regarding the existence of two terminal kinetochores in Hem ip ter an chromosomes as well as the transverse division of the chromosomes. Spermatogonial mitosis - From the beginning of prophase until metaphase nothing worthy of special reference was observed. At anaphase, on the contrary, the behavior of the chromosomes deserves our best attention. Indeed, the chromoso- mes, as soon as they begin to move, they show both ends pronouncedly turned toward the poles to which they are connected by chromosomal fibres. So a premature and remarkable bending of the chromosomes not yet found in any other species of Hemiptera and even of Homoptera points strongly to terminally localized kinetochores. The explanation proposed by HUGHES-SCHRADER and RIS for Nautococcus and by RIS for Tamalia, whose chromosomes first become bent late in anaphase do not apply to chromosomes which initiate anaphase movement already turned toward the corresponding pole. In the other hand, the variety of positions assumed by the anaphase chromosomes of Euryophthalmus with regard to one another speaks conclusively against the idea of diffuse spindle attachments. First meiotic division - Corresponding to the beginning of the story of the primary spermatocytes cells are found with the nucleus entirelly filled with leptonema threads. Nuclei with thin and thick threads have been considered as being in the zygotente phase. At the pachytene stage the bivalents are formed by two parallel strands clearly separated by a narrow space. The preceding phases differ in nothing from the corresponding orthodox ones, pairing being undoubtedly of the parasynaptic type. Formation of tetrads - When the nuclei coming from the diffuse stage can be again understood the chromosomes reappear as thick threads formed by two filaments intimately united except for a short median segment. Becoming progressively shorter and thicker the bivalents sometimes unite their extremities forming ring-shaped figures. Generally, however, this does not happen and the bivalents give origin to more or less condensed characteristic Hemipteran tetrads, bent at the weak median region. The lateral duplicity of the tetrads is evident. At metaphase the tetrads are still bent and are connected with both poles by their ends. The ring-shaped diakinesis tetrads open themselves out before metaphase, showing in this way that were not chiasmata that held their ends together. Anaphase proceeds as expected. If we consider the median region of the tetrads as being terminalized chiasmata, then the chromosomes are provided with a single terminal kinetochore. But this it not the case. A critical analysis of the story of the bivalents before and after the diffuse stage points to the conclusion that they are continuous throughout their whole length. Thence the chromosomes are considered as having a kinetochore at each end. Orientation - There are some evidences that Hemipteran chromosomes are connected by chiasmata. If this is true, the orientation of the tetrads may be understood in the following manner: Chiasmata being hindered to scape by the terminal kinetochores accumulate at the ends of the tetrads, where condensation begins. Repulsion at the centric ends being prevented by chiasmata the tetrads orient themselves as if they were provided with a single kinetochore at each extremity, taking a position parallelly to the spindle axis. Anaphase separation - Anaphase separation is consequently due to a transverse division of the chromosomes. Telophase and secund meiotic division - At telophase the kinetochore repeli one another following the moving apart of the centosomes, the chiasmata slip toward the acentric extremities and the chromosomes rotate in order to arrange themselves parallelly to the axis of the new spindle. Separation is therefore throughout the pairing plane. Origin of the dicentricity of the chromosomes - Dicentricity of the chromosomes is ascribed to the division of the kinetochore of the chromosomes reaching the poles followed by separation and distension of the chromatids which remain fused at the acentric ends giving thus origin to terminally dicentric iso-chromosomes. Thence, the transverse division of the chromosomes, that is, a division through a plane perpendicular to the plane of pairing, actually corresponds to a longitudinal division realized in the preceding generation. Inactive and active kinetochores - Chromosomes carrying inactive kinetochore is not capable of orientation and active anaphasic movements. The heterochromosome of Diactor bilineatus in the division of the secondary spermatocytes is justly in this case, standing without fibrilar connection with the poles anywhere in the cell, while the autosomes are moving regularly. The heterochromosome of Euryophthalmus, on the contrary, having its kinetochores perfectly active ,is correctly oriented in the plane of the equator together with the autosomes and shows terminal chromosomal connection with both poles. Being attracted with equal strength by two opposite poles it cannot decide to the one way or the other remaining motionless in the equator until some secondary causes (as for instances a slight functional difference between the kinetochores) intervene to break the state of equilibrium. When Yiothing interferes to aide the heterochromosome in choosing its way it distends itself between the autosomal plates forming a fusiform bridge which sometimes finishes by being broken. Ordinarily, however, the bulky part of the heterochromosome passes to one pole. Spindle fibers and kinetic activity of chromosomal fragments - The kinetochore is considered as the unique part of the chromosome capable of being influenced by other kinetochore or by the poles. Under such influence the kinetochore would be stimulated or activited and would elaborate a sort of impulse which would run toward the ends. In this respect the chromosome may be compared to a neüròn, the cell being represented by the kinetochore and the axon by the body of the chromosome. Due to the action of the kinetochore the entire chromosome becomes also activated for performing its kinetic function. Nothing is known at present about the nature of this activation. We can however assume that some active chemical substance like those produced by the neuron and transferred to the effector passes from the kinetochore to the body of the chromosome runing down to the ends. And, like an axon which continues to transmit an impulse after the stimulating agent has suspended its action, so may the chromosome show some residual kinetic activity even after having lost its kinetochore. This is another explanation for the kinetic behavior of acentric chromosomal fragmehs. In the orthodox monocentric chromosomes the kinetic activity is greater at the kinetochore, that is, at the place of origin of the active substance than at any other place. In chromosomes provided with a kinetochore at each end the entire body may become active enough to produce chromosomal fibers. This is probably due to a more or less uniform distribution and concentration of the active substance coming simultaneously from both extremities of the chromosome.
Resumo:
Spermatogonial chromosomes of Pachylis laticornis and Pachylis pharaonis begin anaphasic movement with both ends turned toward the same pole, maintaining this form util they reach the poles. This is a proof that they are provided with one kinetochore at each end. Additional proof for a longitudinal division of each longitudinal half of the anaphase chromosomes of the primary sper- matocytes is presented against the idea of a previous end-toend pairing at metaphase. The longitudinal split of the chromosomes of the secondary spermatocytes which used to be considered as tertiary split is therefore a true secondary split. The heterochromosome in both species passes undivided to one pole in the first division of the spermatocyte. In Pachylis laticornis it appears connected with the poles by means of two fibrils detached from each extremity, what may be considered as indicating a rather premature longitudinal spliting. The behavior of the heterochromosome of Pachylis pharaonis is highly interesting and affords one of the most beautiful evidences in favour of the dicentricity of the chromosomes. Really, in metaphase the heterochromosome appears at the equator of the cell with a more or less round shape. In the beginning of anaphase it becomes fusiform. As anaphase proceeds it distends itself between the autosomal plates forming a long fusiform bridge or sends toward the plates a thick chromosomal thread. The bulky part of the heterochromosome as it passes to one side it reincorporates the substance of the thread in this side. The thread in the other side, which becomes generally thiner, is left with its kinetochore in the cell at this side. The heterochromosome therefore becomes terminally monocentric in the first division of the spermatocyte. Some figures, however, suggest that the heterochromossome from time to time may pass with both kinetochores to one of the cells, as ordinarily happens in the case of Pachylis laticornis. Summing up, other things apart the behavior of the heterochromosome in both species studied here puts out of doubt the question of the existence of two terminally located kinetochores.
Resumo:
In order to test Piza's conclusions regarding the dicentricity of Hemipteran chromosomes, two species of bugs of the family Coreidae, namely, Anasa sp. and Leptoglossus stigma (Herbst), are studied in the present paper. a) Anasa sp. - The male of this species has 21 chromosomes, that is, 20 pairs of autosomes and a single sex chromosome. The latter divides equationally in the first division of the spermatocytes and passes undivided to one cell in the second division. In this it moves with its longer axis parallelly to the spindle axis and shows fibrillar connections with both poles. Special attention was paid to the behavior of the chromosomes in the anaphase of the spermatogonia. As it was previously stated (Piza 1946 and 1946a) with regard to other species, the chromosomes are here attached to the spindle by both ends and begin to move toward the poles strongly curved to them. No intercalary fibers could be detected although their existente may not be denied by theoretical reasons developed in another paper (Piza 1946). Mitoses in somatic tissues of the embryo were equally studied. Careful examination of anaphase chromosomes in a great number of cells showed that the chromosomes behave exactly as in the spermatogonia, being equally attached to the spindle by the extremities alone and moving with their ends looking to the pole. A weak median constriction sometimes replaced by a slightly clearer space was observed in prometaphase and even in metaphase chromosomes of the spermatogonia as well as the somatic cells, having already been referred to in the case of Diactor bilineatus. (Piza 1945). Hemipteran chromosomes being considered as iso-chromosomes originated by a longitudinal spliting of the monocentric chromosomes resulting from the second division of the spermatocytes, the median aspect just mentioned may be regarded as the point of union of the separated halves. (See origin of dicentricity in Piza 1946). b) Leptoglossus stigma - This species has spermatogonia provided with 20 pairs of autosomes and one sex chromosome whose behavior differs in nothing from what was stated in regard of the preceding species. In the primary spermatocytes nothing meriting special mention was observed. Orientation, connection with the poles and movements of the sex chromosome in the secondary spermatocytes confirm the views already developed.