123 resultados para leaf area index (LAI)
em Scielo Saúde Pública - SP
Resumo:
ABSTRACT The objective of this study was to evaluate the effect of growth reducer and nitrogen fertilization on morphological variables, SPAD index, radiation interception, and grain yield of three cultivars of wheat. The experimental design was a randomized block in factorial scheme 3x5x2, with three cultivars (Mestre, Iguaçú and Itaipú), five nitrogen doses (0, 40, 80, 120, 160 Kg ha-1), and application or no application of a growth reducer, with three replications. The following characteristics were evaluated: plant height, SPAD index, leaf area index (LAI), Global Radiation Interception (GRI) and grain yield. The Tukey test (p < 0.05) was used for the comparison between the means of cultivar and growth reducer factors, and for a regression analysis to evaluate N levels. Increasing the dose of nitrogen promotes an increase in LAI of plants of wheat crops differently among cultivars, which leads to a greater degree of global radiation interception. At doses higher or equal to 120 Kg ha-1 of nitrogen, there are significant differences in grain yield between treatments with and without the application of the growth reducer. The significant interaction between growth reducer and nitrogen dose, showed that applications of growth reducer increase the GRI at doses above and below 80 Kg ha-1 of nitrogen. Nitrogen rates of 138 and 109 Kg ha-1 are responsible for maximum grain yields of wheat, which is 4235 and 3787 Kg ha-1 with and without the use of growth reducer, respectively.
Resumo:
Patches of seasonally dry tropical forests occur on limestone outcrops in Central Brazil surrounded by the dominant savanna vegetation. They contain valuable timber species but are threatened by farming and mining activities. The objective of this study was to describe canopy opening and light relations in two seasonally deciduous dry forests on slopes and limestone outcrops, in the Paranã valley at the northeastern region of the Goiás state, Brazil. The studied forests were in the Fazenda Sabonete in Iaciara-Go and Fazenda Forquilha in Guarani-GO. Woody plants were sampled in 25 (20 x 20 m) plots in each forest. In the Sabonete forest 40 species, 705 ind./ha-1 with a basal area of 15.78 m²/ha-1 were found, while in Forquilha there were 55 species, 956 ind./ha-1 with a basal area of 24.76 m²/ha-1. Using hemispherical photographic techniques, 25 black and white photographs were taken at each site, during the dry season, totaling 50 photographs. These were taken at the beginning of each vegetation-sampling plot. The photographs were scanned in grey tones and saved as 'Bitmap'. The canopy opening and leaf area index (LAI) were calculated using the software Winphot. The mean canopy opening was 54.0% (±9.36) for Fazenda Sabonete and 64.6% (±11.8) in Fazenda Forquilha, with both sites presenting significant differences in the opening estimates (P < 0.05). Their floristic richness and structure also differed with the more open canopy forest, Forquilha, being richer and denser, suggesting the need for further studies on species-environment relationships in these forests.
Resumo:
The objective of this work was to adapt the CROPGRO model, which is part of the DSSAT system, for simulating the cowpea (Vigna unguiculata) growth and development under soil and climate conditions of the Baixo Parnaíba region, Piauí State, Brazil. In the CROPGRO, only input parameters that define crop species, cultivars, and ecotype were changed in order to characterize the cowpea crop. Soil and climate files were created for the considered site. Field experiments without water deficit were used to calibrate the model. In these experiments, dry matter (DM), leaf area index (LAI), yield components and grain yield of cowpea (cv. BR 14 Mulato) were evaluated. The results showed good fit for DM and LAI estimates. The medium values of R² and medium absolute error (MAE) were, respectively, 0.95 and 264.9 kg ha-1 for DM, and 0.97 and 0.22 for LAI. The difference between observed and simulated values of plant phenology varied from 0 to 3 days. The model also presented good performance for yield components simulation, excluding 100-grain weight, for which the error ranged from 20.9% to 34.3%. Considering the medium values of crop yield in two years, the model presented an error from 5.6%.
Resumo:
The objectives of this work were to determine the heliotropic movements of the upper trifoliates for two soybean cultivars, BR 16 and Embrapa 48, during a daily cycle, in three phenological stages and two water regimes, and to estimate the impact of irrigation and daily leaflet movements on agronomic characteristics and grain yield. Heliotropic movements were studied in three phenological stages: V4-V6, V7-V10, and R5 in irrigated and non-irrigated plots. For each stage, the leaflet elevation and azimuth were measured hourly. Under a low (V4-V6 stage) and mid (V7-V10 stage) leaf area index (LAI) the diaheliotropism was slightly more frequent and intensive in non-irrigated than in irrigated plants, only at early morning and late afternoon hours. At R5 stage (high LAI) the paraheliotropism of superior trifoliates was predominant and more intensive in non-irrigated plants. The heliotropic movements are correlated to carbon gain, but not to environment (light intensity or temperature), for measurements at 11h. 'Embrapa 48' expresses greater paraheliotropism than 'BR 16' at high LAI, while 'BR 16' displays lower heliotropic plasticity under irrigation. In spite of significant heliotropic differences, genotype and water availability treatments did not influence the final grain yield.
Resumo:
The objective of this work was to parameterize, calibrate, and validate a new version of the soybean growth and yield model developed by Sinclair, under natural field conditions in northeastern Amazon. The meteorological data and the values of soybean growth and leaf area were obtained from an agrometeorological experiment carried out in Paragominas, PA, Brazil, from 2006 to 2009. The climatic conditions during the experiment were very distinct, with a slight reduction in rainfall in 2007, due to the El Niño phenomenon. There was a reduction in the leaf area index (LAI) and in biomass production during this year, which was reproduced by the model. The simulation of the LAI had root mean square error (RMSE) of 0.55 to 0.82 m² m-2, from 2006 to 2009. The simulation of soybean yield for independent data showed a RMSE of 198 kg ha-1, i.e., an overestimation of 3%. The model was calibrated and validated for Amazonian climatic conditions, and can contribute positively to the improvement of the simulations of the impacts of land use change in the Amazon region. The modified version of the Sinclair model is able to adequately simulate leaf area formation, total biomass, and soybean yield, under northeastern Amazon climatic conditions.
Resumo:
ABSTRACT This study aimed to verify the differences in radiation intensity as a function of distinct relief exposure surfaces and to quantify these effects on the leaf area index (LAI) and other variables expressing eucalyptus forest productivity for simulations in a process-based growth model. The study was carried out at two contrasting edaphoclimatic locations in the Rio Doce basin in Minas Gerais, Brazil. Two stands with 32-year-old plantations were used, allocating fixed plots in locations with northern and southern exposure surfaces. The meteorological data were obtained from two automated weather stations located near the study sites. Solar radiation was corrected for terrain inclination and exposure surfaces, as it is measured based on the plane, perpendicularly to the vertical location. The LAI values collected in the field were used. For the comparative simulations in productivity variation, the mechanistic 3PG model was used, considering the relief exposure surfaces. It was verified that during most of the year, the southern surfaces showed lower availability of incident solar radiation, resulting in up to 66% losses, compared to the same surface considered plane, probably related to its geographical location and higher declivity. Higher values were obtained for the plantings located on the northern surface for the variables LAI, volume and mean annual wood increase, with this tendency being repeated in the 3PG model simulations.
Resumo:
View angle and directional effects significantly affect reflectance and vegetation indices, especially when daily images collected by large field-of-view (FOV) sensors like the Moderate Resolution Imaging Spectroradiometer (MODIS) are used. In this study, the PROSAIL radiative transfer model was chosen to evaluate the impact of the geometry of data acquisition on soybean reflectance and two vegetation indices (Normalized Difference Vegetation Index - NDVI and Enhanced Vegetation Index -EVI) by varying biochemical and biophysical parameters of the crop. Input values for PROSAIL simulation were based on the literature and were adjusted by the comparison between simulated and real satellite soybean spectra acquired by the MODIS/Terra and hyperspectral Hyperion/Earth Observing-One (EO-1). Results showed that the influence of the view angle and view direction on reflectance was stronger with decreasing leaf area index (LAI) and chlorophyll concentration. Because of the greater dependence on the near-infrared reflectance, the EVI was much more sensitive to viewing geometry than NDVI presenting larger values in the backscattering direction. The contrary was observed for NDVI in the forward scattering direction. In relation to the LAI, NDVI was much more isotropic for closed soybean canopies than for incomplete canopies and a contrary behavior was verified for EVI.
Resumo:
A análise da dinâmica do dossel tem grande importância para se avaliar o efeito da urbanização nos fragmentos florestais, uma vez que alterações nas copas resultam em modificações abióticas e bióticas abaixo destas. Para a analise da dinâmica do dossel, avaliou-se a produção de serapilheira e o índice de área foliar (IAF), obtido por três diferentes metodologias, durante dois anos, em um fragmento de mata semidecídua, do perímetro urbano de Belo Horizonte, MG. A produção de serapilheira média anual foi de aproximadamente 6,47 t. ha-1. ano-1, com grande variação sazonal. Os valores médios de IAF obtidos a partir de fotografias hemisféricas (IAF-foto) e utilizando o LAI-2000 (LI-COR) (IAF-LAI2000), no final da estação chuvosa, foram respectivamente, 2,3 e 4,9 e 0,78 e 1,3, na estação seca. Esses valores foram superiores aos valores de IAF obtidos a partir da área foliar específica das folhas da serapilheira (IAF-serapilheira). Os métodos utilizando imagens hemisféricas (IAF-foto e IAF-LAI2000) mostraram, apesar de valores distintos, a dinâmica do dossel de maneira similar. O IAF-serrapilheira mostra essa dinâmica de maneira inversa, com uma boa relação linear negativa entre os valores de IAF, obtidos através das imagens hemisféricas, e os valores de IAF obtidos através das folhas da serapilheira. Esses resultados sugerem que as três metodologias igualmente podem ser utilizadas para registrar a dinâmica do dossel.
Resumo:
Reduction in leaf area in corn plants during reproduction changes physiological metabolism and consequently the accumulation of dry matter in grains. The aim of this work was to study changes in agronomic characteristics caused by defoliation in corn during the reproduction phase. The experiment was carried out in Uberlândia, Minas Gerais state, in the agricultural year 2007/2008. The experiment was arranged in a randomized block design, consisting of seven treatments: control without defoliation, removal of two apical leaves, removal of four apical leaves, removal of all leaves above spike, removal of four intermediate leaves, removal of all leaves below spike, and removal of all plant leaves, with five repetitions. The genotype used for the evaluations was hybrid NB 7376. Defoliation was carried out when plants were at the growth stage R2. The variables assessed were: yield, density of spikes and corncobs, root resistance and stem integrity. When all leaves above the spike were removed, grain yield was reduced by 20%. Corncob density, stem integrity and root resistance to uprooting were also affected. Spike density was only affected when all plant leaves were removed. The leaf area remaining physiologically active above the spike was found to be most efficient in terms of grain yield.
Resumo:
Morpho-physiological characteristics and chemical composition are directly related to superior competitive ability of crops. This study intended to make a comparative analysis of dry matter production, leaf area and amount of epicuticular wax of three species of Sida spp: S. urens L., S. rhombifolia L. and S. spinosa L. Plants were collected at three growth stages: V1: stage described as up to 10 fully expanded leaves; V2: between 11 leaves and flowering; and R: after flowering. At stages V2 and R, the highest number of leaves was recorded for S. rhombifolia, followed by S. spinosa at V2 and S. urens at R. These results were relatively proportional to leaf area for all species. S. spinosa at the vegetative stage produced the highest values of specific leaf area (SLA), with no significant differences between species at the stage R. The amount of wax per unit of leaf area between species at the same developmental stage was significantly different only at the reproductive stage, where S. spinosa produced 23.18 and 6.23 fold more wax than S. urens and S. rhombifolia respectively. Between the growth stages of each species, there was decrease in the amount of wax with plant age and increase in leaf area (AFE), number of leaves and dry matter. The leaves of the Sida species exhibit different characteristics and this information can be used to optimize the use of herbicides in the control of these weeds.
Resumo:
Studies on nutritional status and leaf traits were carried out in two tropical tree species Swietenia macrophylla King (mahogany) and Dipetryx odorata Aubl. Willd. (tonka bean) planted under contrasting light environments in Presidente Figueiredo-AM, Brazil. Leaves of S. macrophylla and D. odorata were collected in three year-old trees grown under full sunlight (about 2000 µmol m-2 s-1) and natural shade under a closed canopy of Balsa-wood plantation (Ochroma pyramidale Cav. Ex. Lam.Urb) about 260 µmol m-2 s-1. The parameters analysed were leaf area (LA), leaf dry mass (LDM), specific leaf area (SLA) and leaf nutrient contents. It was observed that, S. macrophylla leaves grown under full sunlight showed LA 35% lower than those grown under shade. In D. odorata leaves these differences in LA were not observed. In addition, it was observed that S. macrophylla shade leaves, for LDM, were 50% smaller than sun leaves, while in D. odorata, there differences were not observed. SLA in S. macrophylla presented that sun leaves were three times smaller than those grown under shade. In D. odorata, no differences were observed. Nutrient contents in S. macrophylla, regardless of their light environments, showed higher contents for P and Ca than those found in D. odorata. The N, K, Fe and Mn contents in S. macrophylla leaves decreased under shade. Finally, we suggest that the decreasing in leaf nutrient contents may have a negative influence on leaf growth. The results demonstrated that the tested hypothesis is true for leaf traits, which D. odorata, late-successional species, showed lower plasticity for leaf traits than Swietenia macrophylla, mid-successional species.
Resumo:
We addressed the influence of the stem galls induced by an unidentified species of Apion sensu lato (Brentidae, Apioninae) on the host plant, Diospyros hispida (Ebenaceae) leaf area and induced resistance against a Cecidomyiidae (Diptera) leaf galls. The study was performed in a cerrado vegetation in Serra do Cipó, southeastern Brazil. Although the number of leaves produced on galled and ungalled shoots did not differ statically (p>0.05), the presence of the apionid galls influenced the area of the leaves on the attacked shoots of D. hispida. Leaves on galled stems were approximately 50% smaller compared to leaves in healthy stems. The average of the cecidomyiid leaf galls successfully induced on healthy shoots was higher compared to galls successfully induced on shoots galled by the apionid. The same pattern was found for the abundance of hypersensitive reactions against the cedidomyiid gall induction. Therefore, the ability of the cecidomyiid to successfully induce galls was not influenced by the apionid galler.
Resumo:
Low phosphorus supply markedly limits leaf growth and genotypes able to maintain adequate leaf area at low P could adapt better to limited-P conditions. This work aimed to investigate the relationship between leaf area production of common bean (Phaseolus vulgaris) genotypes during early pod filling and plant adaptation to limited P supply. Twenty-four genotypes, comprised of the four growth habits in the species and two weedy accessions, were grown at two P level applied to the soil (20 and 80 mg kg-1) in 4 kg pots and harvested at two growth stages (pod setting and early pod filling). High P level markedly increased the leaf number and leaf size (leaf area per leaf), slightly increased specific leaf area but did not affect the net assimilation rate. At low P level most genotypic variation for plant dry mass was associated with leaf size, whereas at high P level this variation was associated primarily with the number of leaves and secondarily with leaf size, specific leaf area playing a minor role at both P level. Determinate bush genotypes presented a smaller leaf area, fewer but larger leaves with higher specific leaf area and lower net assimilation rate. Climbing genotypes showed numerous leaves, smaller and thicker leaves with a higher net assimilation rate. Indeterminate bush and indeterminate prostrate genotypes presented the highest leaf area, achieved through intermediate leaf number, leaf size and specific leaf area. The latter groups were better adapted to limited P. It is concluded that improved growth at low P during early pod filling was associated with common bean genotypes able to maintain leaf expansion through leaves with greater individual leaf area.
Resumo:
Leaf area measurements are required in several agronomical studies. Usually, there is an interest for measurement methods that are simple, quick and that will not destroy the leaf. The objectives of this work were to evaluate leaf area (y), length (l) and width (w) of 20 half-sibling progenies of custard apple tree (Annona squamosa L.), and to fit regression equations of the type y = a + bx, where x = l.w, that will allow y to be estimated based on l and w. The experiment was conducted as random blocks with five replicates and four plants per plot. Five mature leaves were randomly collected from each plant. Leaf area was measured with an automatic measuring device and leaf dimensions were determined with a ruler. All values of b were different from zero. Differences occurred only in 11% of the 190 possible comparison pairs between progenies, with regard to the estimates of b. No differences were observed between progenies with respect to leaf length, width and area. In view of this fact, the equation y = 0.72 x (R² = 0.77) was fitted for all progenies.
Resumo:
The effect of Heterodera glycines on photosynthesis, leaf area and yield of soybean (Glycine max) was studied in two experiments carried out under greenhouse condition. Soybean seeds were sown in 1.5 l (Experiment 1) or 5.0 l (Experiment 2) clay pots filled with a mixture of field soil + sand (1:1) sterilized with methyl bromide. Eight days after sowing, seedlings were thinned to one per pot, and one day later inoculated with 0; 1.200; 3.600; 10.800; 32.400 or 97.200 J2 juveniles of H. glycines. Experiment 1 was carried out during the first 45 days of the inoculation while Experiment 2 was conducted during the whole cycle of the crop. Measurements of photosynthetic rate, stomatic conductance, chlorophyll fluorescence, leaf color, leaf area, and chlorophyll leaf content were taken at ten-day intervals throughout the experiments. Data on fresh root weight, top dry weight, grain yield, number of eggs/gram of roots, and nematode reproduction factor were obtained at the end of the trials. Each treatment was replicated ten times. There was a marked reduction in both photosynthetic rate and chlorophyll content, as well as an evident yellowing of the leaves of the infected plants. Even at the lowest Pi, the effects of H. glycines on the top dry weight or grain yield were quite severe. Despite the parasitism, soybean yield was highly correlated with the integrated leaf area and, accordingly, the use of this parameter was suggested for the design of potential damage prediction models that include physiological aspects of nematode-diseased plants.